Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



ВАЖНЕЙШИЕ ЭЛЕМЕНТЫ ЗЕМНОЙ КОРЫ



Элемент Мас., % Число известных минералов
Кислород, О 49,13
Кремний, Si 26,00
Алюминий, AI 7,45
Натрий, Na 2,40
Магний, Mg 2,35
Кальций, Са 3,25
Железо, Fe 4,20
Калий, К 2,35
Водород, Н 1,00
Углерод, С 0,35
Титан, Ti 0,61
Хлор, С1 0,20
Фтор, F 0,08

 

III класс: галогениды, например галит, сильвин, кар­наллит, криолит и др.

IV класс: окислы, гидроокислы, например лед, куп­рит, шпинель, магнетит, хромит, гематит, корунд, кварц, ильменит, вольфрамит1, гидраргиллит, диаспор, гётит и др. [Вольфрамит чаще описывается вместе с другими вольфрама-тами, т. е. в VI классе.]

V класс: нитраты, карбонаты, бораты, например ка­лиевая селитра, кальцит, магнезит, сидерит, доломит, арагонит, церуссит, азурит, малахит, людвигит, борацит и др.

VI класс: сульфаты (а также теллураты, хроматы, молибдаты, вольфраматы), например ангидрит, гипс, барит, кизерит, полигалит, каинит, крокоит, вульфенит.

VII класс: фосфаты, арсенаты, ванадаты, например монацит, лазулит, вивианит, вавеллит, бирюза, апатит и др.

VIII класс: силикаты, например силикаты с изолиро­ванными тетраэдрами [SiO4]4~ (незосиликаты, ортоси-ликаты)—оливин, топаз, дистен, андалузит, силлима­нит, ставролит, гранат, аксинит и др.; с изолированными группами [Si2O7]e~ (соросиликаты)—эпидот, цоизит; с кольцевыми анионными радикалами (циклосиликаты) — берилл, кордиерит, турмалин и др.; с бесконечными цепочками тетраэдров [SiO4]4~ (шюсиликаты)—пи-роксены, амфиболы, родонит и др.; с бесконечными слоями тетраэдров [SiO4]4~ (филлосиликаты)—тальк, мусковит, биотит, циннвальдит, хлориты, каолинит и др.; с бесконечными трехмерными каркасами тетраэд­ров [(SiAl)O4] (тектооиликаты) —полевые шпаты, лей­цит, анальцим, нефелин, цеолиты и др.

Каждый минерал имеет определенный химический состав, находящий свое выражение в химической фор­муле. Последняя содержит в виде сокращенных симво­лов названия входящих в состав соединения элементов, таких, как железо (Fe), марганец (Мп), никель (Ni), сера (S), кремний (Si), кислород (О), водород (Н), уг­лерод (С), кальций (Са), натрий (Na), хлор (С1) и т. д.

 

Рис. 2. Диаграмма, на которой показано распространение важнейших элементов в земной коре (литосфера-т-гидросфера+ + атмосфера) (в мае. %).

 

По обеим сторонам диаграммы показано содержание «ажнейших металле* (черные столбики).

 

Структурная формула отражает строение минерала. Соединение NaCl (каменная соль) состоит из одного атома натрия и одного атома хлора. При этом 23 массо­вые части натрия связаны с 25 массовыми частями хло­ра. Пирит, FeS2, состоит из одного атома железа и двух атомов серы, т. е. в нем 56 массовых частей железа свя­заны с (32-2) массовыми частями серы.

Вычисление содержаний тех или иных компонентов в минералах часто производится в массовых процентах. Для наглядности приведем простой пример. Минерал сидерит (железный шпат), FeCO2, имеет следующий состав:

 

 

Элемент Атомная масса Содержание железа
Железо, Fe 55,85 55,85:15,86 =
Углерод, С Кислород, Оз 12,01 48,00 = 48,2 мас.% Fe
115,86

Чтобы в более наглядной форме представить хими­ческие взаимоотношения в минералах сложного состава, формулы в минералогии записывают несколько иначе. Калиевый полевой шпат (ортоклаз) имеет, например, химическую (структурную) формулу KAlSi3O8; если же выразить состав этого минерала в виде окислов, то его формула примет вид К2О-Аl2О3-6SiO2. Минерал состо­ит из

 

64,8 мас. % SiO2 (двуокись кремния),
18,3 мас. % А1203 (окись алюминия),
16,9 мас. % КаО (окись калия).

ОБРАЗОВАНИЕ

И ОБЛИК МИНЕРАЛОВ

И КРИСТАЛЛОВ

 

Изучение облика минералов, т. е кристалломорфо-логия, составляет один из существенных разделов мине­ралогии. Минералогам, петрографам и исследователям месторождений, словом, каждому, кто занят изучением минерального мира, кристаллография — учение о кри­сталлах— необходима для диагностики минералов и их агрегатов. Подчас минералы встречаются в природе в виде правильных кристаллов, выросших в пустотах, но гораздо чаще в виде сплошных зернистых или плотных образований (рис. 3). Минералы, кристаллизовавшиеся в условиях земной коры, образованы по определенным законам. Их кристаллографическая форма зависит от химического состава, а также от физических условий образования — давления и температуры.

По своим размерам природные кристаллы могут быть самыми разными: от микроскопических до весьма крупных вплоть до нескольких метров длиной и в попе­речном сечении. Внешний облик кристаллов зависит от того, насколько спокойно происходил их рост. Большин­ство кристаллов в природе растут медленно — тысячи и миллионы лет. Однако некоторые кристаллы растут очень быстро, например кристаллы легко растворимых солей, иногда сублимационных минералов (сера, таблич­ки гематита) в кратерах действующих вулканов.

Вообще говоря, кристаллы образуются в тех случаях, когда какое-либо вещество переходит из жидкого или газообразного состояния в твердое. Рост кристалла на­чинается с образования зародышей и скелетных форм. При длительном, равномерном, беспрепятственном по­ступлении вещества со всех сторон возникают нормаль­ные кристаллические формы, что, однако, едва ли является правилом. В большинстве случаев кристаллы стеснены в своем росте соседними телами (соседними кристаллами). Это приводит к образованию несовершен­ных кристаллов с искаженными гранями, так как по­ступление растворов, питающих кристалл, происходит с разных сторон неравномерно.

Признаками хорошо образованных форм монокри­сталла являются ровные, блестящие грани, отсутствие входящих углов (только двойниковые сростки имеют разнообразные входящие углы). Часто грани кристал­лов бывают шероховатыми, с притупленными ребрами, а сами ребра закругленными. Подобные особенности следует относить за счет процессов растворения, когда на кристалл воздействовали активные растворы.

Многочисленные физические и химические свойства выкристаллизовавшихся минералов, такие, например, как характер роста кристаллов, форма кристаллов, твер­дость, спайность, растворимость и т. д., зависят от хи­мического состава кристаллов, от их упорядоченного атомного или молекулярного строения. Изучением этих вопросов заняты специалисты одного из наиболее важ­ных направлений исследований в кристаллографии. На­пример, кристалл каменной соли — хлорида натрия (NaCl), состоит из атомов натрия и хлора. По углам ку­бической элементарной ячейки NaCl располагаются, чередуясь, атомы натрия и хлора (табл. 1). Эти «кирпи­чики» расположены в пространстве закономерно. В це­лом подобная конструкция называется кристаллической решеткой. Каменная соль образует кубические кристал­лы и спайные выколки по кубу именно вследствие своей характерной структуры.

В соответствии с химическим и кристаллографиче­ским многообразием в минеральном мире существует некоторое количество структурных типов кристалличе­ских решеток, иногда построенных просто, но чаще имеющих весьма сложное строение. Исследования атом­ного строения кристаллических решеток, успешно про­водимые с помощью рентгенографии, включают изуче­ние химии минералов и некоторых аспектов атомной физики.

Можно привести следующие примеры отдельных ти­пов кристаллических структур: кубическая гранецентрированная решетка самородной меди, построенная из атомов меди, кубическая решетка галита (каменной соли), построенная из как бы вложенных друг в друга кубиче­ских гранецентрированных решеток из ионов Na+ или Сl-, кубическая решетка флюорита, слоистая решетка молибденита, гексагональная и тригональная решетки кварца, тригональная решетка кальцита.

 


Рис. 3. Полость рудной жилы в разрезе.


 

Многообразны типы кристаллических решеток у сульфидов и окислов. Особый интерес с точки зрения их структуры представляют силикаты, преобладающие в составе горных пород, и среди них в первую очередь такие, как полевые шпаты, слюды, оливин, пироксены, амфиболы. В составе этих минералов большую роль иг­рают кремний (Si) и кислород (О). В силикатах атом кремния всегда окружен четырьмя атомами кислорода,

 

ТАБЛИЦА 1

 



Просмотров 701

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!