Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Нагруженность деталей двигателя и расчетные режимы



 

Детали двигателя оказываются нагруженными в результате действия сил давления газов, инерции, трения, моментов сил, а также в результате развития колебательных процес­сов в деталях двигателя. Дополнительные напряжения развиваются в деталях двигателя из-за неравномерного их нагревания и использования технологических приемов сборки, связанных с деформациями сопрягаемых деталей.

Напряженное состояние детали в результате действия механических и тепловых нагру­зок оказывается сложным. От возникающих напряжений зависят механическая прочность, надежность, долговечность деталей д.в.с. затраты металла на его изготовление и при эксплуатации и капитальном ремонте.

Величина и характер изменения основных нагрузок, воздействующих на детали двига­теля, зависят от режима работы двигателя. При этом расчет деталей на прочность произ­водят для установившихся режимов работы, при которых рассчитываемые детали нахо­дятся в наиболее тяжелых условиях. Учитывают также и продолжительность работы дви­гателя на этих режимах, что является важным для установления зависимости между полу­ченными напряжениями, запасами прочности и показателями надежности.

Для двигателей с искровым зажиганием характерными являются следующие расчет­ные режимы:

- максимального крутящего момента Мк при частоте вращения п = (0,4...0,б)гс„, когда

давление газов в цилиндре достигает максимальных значений, а силами инерции можно пренебречь;

- номинальной мощности Nт при частоте вращения пн в случае необходимости учета

совместного влияния сил давления газов и сил инерции;

- максимальной частоты вращения холостого хода, при которой силы инерции дости­гают наибольших значений, а давление газов незначительно.

Для двигателей с искровым зажиганием без ограничителя частоты вращения принима­ется пххтяк = (1,4...1,б)ян, а с ограничителем частоты вращения пххтах = (1,4...1,б)«н Расчетные режимы для быстроходных дизелей:

- номинальной мощности NeH при частоте вращения пн, когда достигаются наиболь­шие давления сгорания;

-максимальной частоты вращения холостого хода пххтах =(1,05...1,07)ин, определяе­мой работой регулятора, при которой максимальные значения имеют силы инерции.

При работе на любом из упомянутых режимов существовать определенная степень на­грева деталей, что приведет к развитию дополнительных тепловых деформаций и соот­ветственно дополнительных напряжений в деталях. Уже из приведенного перечня так на­зываемых расчетных режимов видно, что наиболее четко выраженным свойством всех действующих сил, а отсюда и напряженного состояния всех деталей двигателя, будет их переменность или цикличность действия. Подчеркнем, что в данном случае речь идет о силах и нагрузках, развивающихся при работе на установившемся режиме. Если при­нять во внимание переменность режимов работы при эксплуатации двигателя, то стано­вится понятной известная неопределенность сочетания нагрузок на детали двигателя, на­пряженного состояния деталей, а отсюда и известная условность расчетных оценок проч­ности деталей.

Циклическая прочности

 

Основным свойством нагрузок, действующих на детали двигателя, является их переменность. Известно, что детали, подвергающиеся длительной переменной на­грузке, разрушаются при напряжениях, меньших предела прочности материала при стати­ческом нагружения. В д. в. с. статическая нагрузка является исключением. Нагрузочный и скоростной режимы работы двигателя обусловливают циклическое изменение на­грузки на детали с определенными частотой и амплитудой. При расчете на проч­ность под действием циклических нагрузок за основу берут напряжение, называемое пределом выносливости.

Различают циклы нагружения (рисунок ) симметричный знакопеременный, асиммет­ричный знакопеременный, пульсирующий, сложный. Амплитуда и период цикла служат основными его характеристиками. Обычно выделяют и максимальное и мини­мальное напряжения цикла, а„ и оТ -амплитудное и среднее значения напряжений цикла. Величину называют коэффициентом асимметрии цикла.

Рис.13. - Диаграмма выносливости (а) и схема циклов нагружения знакопеременного симметрического (б), знакопеременного асимметрического (в), пульсирующего (г), слож­ного (д)

Жесткость конструкции

 

Работоспособность конструкции двигателя внутреннего сгорания и его деталей в зна­чительной степени определяется их жесткостью. Под этим качеством конструкции д. в. с. понимается способность сопротивляться действию внешних нагрузок с наименьшими деформациями. Повышенная деформация (без разрушения и без нарушения механической прочности) может привести к выходу из строя двигателя в целом. Количественно жест­кость оценивается коэффициентом, представляющим собой отношение силы, приложен­ной к системе, к максимальной деформации, вызываемой этой силой. Величину, обратную

коэффициенту жесткости, называют коэффициентом упругости. , (Х-"®]^jL_j±,

Жесткость конструкции определяется модулем упругости материала, геометриче­скими характеристиками сечения и линейными размерами деформируемого тела, ви­дом нагружения и конструкцией опор. В практике конструирования следует отдавать \ предпочтение такому материалу, который обладает способностью нести наиболее высокие нагрузки при наименьших деформациях и массе.

В д. в. с. нежесткий блок цилиндров может вызвать нарушение регулировок располо­женных на нем механизмов, повышенное трение и износ подшипников скольжения и даже их выкрашивание.

Существует тенденция максимального обеспечения прочности конструкции путем придания ей равнопрочных свойств при использовании сверхпрочных материалов, спо­собных работать без нарушения при достаточно высоких деформациях. Эти факторы уменьшают жесткость конструкций. Нужно иметь в виду также, что ремонтные воздейст­вия на детали д. в. с. (такие, как перешлифовка шеек вала под ремонтные размеры) также приводят к уменьшению жесткости детали, узла. Возможности аналитической оценки способности конструкции д. в. с. к деформациям связаны с использованием метода ко­нечных элементов, вошедшего в практику прочностных расчетов в последние годы благо­даря использованию ЭВМ. Аналогичные оценки классическими методами сопротивления материалов или теории упругости для деталей д. в. с. затруднительны.

 



Просмотров 729

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!