![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Течение жидкости в цилиндрических трубах. Формула Гагена-Пуазейля. Гидравлическое сопротивление
Течение вязкой жидкости по трубам представляет интерес для медицины, т.к.кровеносная система состоит, в основном, из цилиндрических сосудов разного диаметра. Скорость слоя соприкасающегося со стенками труб = 0; наибольшую скорость имеют частицы движущиеся вдоль оси трубы. V4>V3>V2>V1 (V-скорость) Объем жидкости, протекающей через горизонтальную трубу за 1 сек (тетта) выражается формулой Пуазейля Q = (пR^4/8*этта)*(p2-p1/l) R - радиус трубы этта - вязкость жидкости l - длина трубы Р1и Р2 - давление в начале и концы трубы Р2 > Р1 Из формулы видно, что при прочих равных условиях через трубу проходит тем больше жидкости, чем больше радиус трубы и меньше вязкость жидкости. Величина x = 2*этта*l/пи*R^4 носит название гидравлического сопротивления. Гидравлического сопротивления тем больше, чем больше вязкость (этта) и длина трубы(l) именьшая площадь поперечного сечения(S = пи*R^2) Гидравлическое сопротивление труб соединённых последовательно: x = x1 + x2 + ... Параллельно: 1/x = 1/x1 + 1/x2 + ... => x = (1/x1 + 1/x2 + 1/x3 + ...)^-1 Для труб переменного сечения: Q = (пи*R^4/8*этта)*(dP/dl) Чем шире труба, тем больше давление на стенки и меньше скорость течения жидкости; чем уже труба, тем скорость течения больше, а давление на стенки труб меньше. №59 Тормозное рентгеновское излучение. Спектр излучения и его характеристическое рентгеновское излучение.
Рентгеновское излучение - электромагнитныеволны длиной от 80 до 10в-5 нм. По способу возбуждения его подразделяют на тормозные и характеристические. Рентгеновская трубка - двухэлектродный вакуумный прибор. Подогреваемый катод испускает электроны. Haклоненный анод направляет излучение под углом к оси трубки. В результате торможения электронов анодом (электростатическим полем атомного ядра вещества анода) возникает тормозное рентгеновское излучение. Длинноволновое рентгеновское излучение ,более "мягкое", а коротковолновое- жесткое, оно обладает большой проникающей способностью, поглощение его зависит от плотности вещества. Если напряжение в рентгеновской трубке увеличить, то на фоне сплошного спектра появляется линейчатый - Характерестическoe рентгеновское излучение. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободноеместо переходят электроны с верхних уровней, при этом излучаются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны, однотипность обусловлена тем, что внутренний слой у разных атомов одинаковы и отличаются лишь энергетически. Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. По закону Мозли !корень из НЮ=A(Z-B)!, где НЮ -частота спектральной линии, Z-атомный номер элемента, Аи В - постоянные. Характеристические спектры кислорода одинаковы и y O, O2, H2O в любом соединении, это и послужило названию характеристическое. 14 Ультразвук. Применение и источники ультразвука. Действие ультразвука на ткани организма. Использование ультразвука в медицине. Ультразвк – механические колебания и волны, частоты которых более 20 кГц. Верхний предел ультразвка 10^9 – 10^10 Гц. Для генерации ультразвука применяют устройства УЗ-излучатели – электро-механические излучатели. Они основаны на явлении обратного пьезоэффека под действием электрического поля некоторые кристаллы (кварцы, сегнетова соль, керамика на основе титана, бария и др.) деформируются. На пластинку с хорошо выраженным пьезоэффектом подаётся переменное напряжение с частотой, подобранной для данного материала определённой толщины. Пластинка, вступившая в резонанс с внешним напряжением, начинает колебаться с той же частотой, в пространстве узлучается УЗ-волна данной частоты. Применени УЗ создаётся уже на основе пьезоэффекта – возникновение напряжения при деформации кристалла, которое может быть измерено. Применение УЗ в медицине связано с особенностями его распространения. Отражение УЗ на границе раздела двух сред зависит от соотношения волновых сопротивлений. УЗ-волны хорошо отражаются от границы мышцы-надкостница-кость, поверхности полых органов и т.д., поэтому можно определить расположение и размеры неоднородных включений полостей внутренних органов и т.д. Скорость УЗ-волн и их поглощение зависит от состояния среды (УЗ используют для изучения молекулярных свойств вещества). При воздействии УЗ на биологические ткани возникают: микровибрации на клеточном уровне, разрушение био-макро-молекул. Перестройка и повреждение биологических мембран, изменение проницаемости мембран; тепловое действие; разрушение клеток и микроорганизмов. Ультразвук в медицине используется в диагностике, либо как метод воздействия на ткани.
41
Биопотенциалы являются существенным диагностическим показателем многих заболеваний. Т.к. биопотенциалы сравнительно медленно изменяются со временем, то в приборах используют усилители постоянного тока. Усилители - устройства, увеличивающие принимаемые электродами сигналы за счет энергии постороннего источника. Они имеют вход, на который подается принятый электрический сигнал и выход, с которого снимается усиленный сигнал. Существенное требование к усилителям - воспроизведение усиленного сигнала без искажения. Характеристикой усилителя является коэффициент усиления: Коэффициент усиления усилителя из нескольких каскадов: К=К1+К2+К3 Рассмотрим усиление сигнала транзистором – спаянные вместе полупроводники p-n-p типа или n-p-n типа. На границе двух полупроводников (п/п) образуется р-n переход, сопротивление которого зависит от направления приложенного напряжения. На базе (эмиттерном переходе) Еэ создаёт прямое напряжение, это напряжение Uвх можно изменять, используя делитель напряжения – D. На коллекторном переходе Eк создает обратное напряжение. Усиленное по сравнению с Uвх напряжение Uвых снимается с резистора нагрузки Rн коллекторной цепи. Сила тока в цепи коллектора мала при отсутствии напряжения в эмиттерной цепи. Если создать и увеличивать напряжение между эмиттером и базой, то будет возникать и сила тока в цепи эмиттера. Сила тока в цепи коллектора возрастет.
Специфика усиления биопотенциалов: 1) выходное сопротивление биологической системы вместе с сопротивлением электродов обычно велико; 2) биопотенциалы - медленно изменяющиеся сигналы; 3) биопотенциалы - слабые сигналы.
![]() |