Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Круговороты азота, фосфора и серы



 

Круговорот азота. Это пример сложного и хорошо забуференного круговорота газообразных веществ. На рисунке 2.4 представлены два способа изображения сложного круговорота азота, каждый из которых иллюстрирует какую-то общую особенность или движущую силу. В круговороте азота ключевую роль играют микроорганизмы. Именно они осуществляют основные типы обмена между организмами и средой.

Рис 2.4. Два способа изображения биогеохимического круговорота азота (по Ю. Одуму, 1975): А – циркуляция азота между микроорганизмами и окружающей средой при участии микроорганизмов, отвечающих за ряд ключевых этапов; Б – те же основные этапы, но расположенные таким образом, что соединения, богатые энергией, находятся вверху; это позволяет отличить этапы, требующие затрат энергии, от процессов, протекающих с высвобождением энергии

 

На схеме А показано, что азот протоплазмы переводится из органической в неорганическую форму в результате деятельности бактерий-редуцентов, каждый вид которых выполняет определенную работу. Часть азота в конечном счете переводится в аммиачную и нитратную формы, доступные для питания растений. Как известно, воздух почти на 79 % состоит из азота и представляет собой одновременно крупнейший резервуар и буфер системы. Благодаря деятельности денитрифицирующих бактерий азот постоянно поступает атмосферу, а под действием азотофиксирующих бактерий возвращается в круговорот.

Схема Б иллюстрирует процессы, из которых складывается круговорот азота: фиксацию, ассимиляцию, нитрификацию, денитрификацию, разложение, выщелачивание, вынос, выпадение с осадками, и другие, а также оценки двух потоков, непосредственно связанных с деятельностью человека: выбросов в атмосферу и промышленной фиксации азота, соединения которого используются главным образом в качестве удобрений.

Так как содержание N2 в атмосфере резко не меняется, можно предположить, что приток т отток в целом уравновешивают друг друга.

На схеме Б представлены энергетические взаимоотношения в круговороте азота. Ступенчатый процесс разложения белков до нитратов служит источником энергии для организмов, принимающих участие в его разложении, а для обратного процесса требуются другие источники энергии – органическое вещество или солнечный свет. Например, хемосинтезирующие бактерии Nitrosomonas, превращающие аммиак в нитрит, получают энергию за счет разложения, а денитрифицирующие и азотофиксирующие – используют другие источники.

Однако ни животные, ни человек, ни растения потреблять молекулярный азот не могут. Огромное количество молекулярного азота в атмосфере в чрезвычайно малой степени затрагиваются биологическим круговоротом: общее отношение связанного азота к его количеству в природе составляет 1: 1000000 (Акимова, Хаскин, 1998). Несмотря на громадное количество молекулярного азота в атмосфере, он является одним из наиболее лимитирующих биогенных элементов. Столб воздуха над одним гектаром земной поверхности составляет 80000 т молекулярного азота. Если бы растения могли усваивать молекулярный азот, то такого его количества хватило бы для получения урожая 30 ц/га на полмиллиона лет. Однако растения могут использовать только азот минеральных соединений. Поэтому, буквально «купаясь» в молекулярном азоте, они испытывают его нехватку.

Из растений фиксировать азот могут только представители семейства бобовых, на корнях которых образуются клубеньки, состоящие из азотофиксирующих бактерий. Однако и среди бобовых далеко не все виды могут фиксировать атмосферный азот. Всего семейство бобовых насчитывает 13000 видов, а наличие клубеньковых бактерий обнаружено у 1300. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год, промышленная его фиксация составляет около 90 млн. т.

Фиксировать азот могут следующие роды организмов:

· свободно живущие бактерии – Azotobakter и Clostridium (анаэроб);

· сибиотические клубеньковые бактерии бобовых растений – Rhizobium;

· цианобактерии – Anabaena, Nostoc и др.

Из всего азота, который ежегодно усваивается глобальным биотическим сообществом, около 80 % возвращается в круговорот суши и воды и только 20 % поступает из атмосферы с дождем и в результате фиксации.

Благодаря механизмам обратной связи, обеспечивающим саморегуляцию, круговорот азота можно считать относительно замкнутым, если рассматривать его в масштабе крупных площадей или всей биосферы.

В современных условиях человек своей деятельностью оказывает значительное влияние на круговорот азота: увеличивает содержание азота в резервном фонде (сжигание ископаемого топлива, осушение заболоченных земель, обработка почвы и т.д.) и снижает его содержание (выращиванием бобовых культур на громадных территориях, техническое связывание азота) в атмосфере.

Круговорот фосфора. В отличие от азота резервным фондом этого элемента служат горные породы и другие отложения, образовавиеся в прошлые геологические эпохи. По структуре круговорот фосфора проще, чем круговорот азота. Он циркулирует, постепенно переходя из органических соединений в фосфаты, которые снова могут использоваться растениями. Горные породы подвергаются воздействию выветривания, в результате чего фосфор высвобождается и становится доступным для растений. Под действием эрозионных процессов он попадает в море и на значительный промежуток времени высвобождается из круговорота. По всей вероятности, механизмы возврата фосфора в круговорот недостаточно эффективны и не возмещают его потерь. Перенос фосфора с морской воды на сушу не компенсирует его поток в море.

Деятельность человека ведет к усиленной потере фосфора, что делает круговорот недостаточно замкнутым. Важность фосфора как элемента, обеспечивающего продуктивность биосферы, со временем будет возрастать, так как уже сейчас он причисляется к редким макроэлементам. Поэтому возврат фосфора в круговорот имеет важное значение для человечества.

Круговорот серы. Круговорот серы имеет ряд характерных особенностей:

· обширный резервный фонд в почвах и меньший – в атмосфере;

· ключевая роль в быстро обменивающемся фонде микроорганизмов, выполняющих определенную работу в окислении или восстановлении;

· микробная регенерация из глубоководных отложений, в результате которой вверх движется газовая фаза (H2S);

· взаимодействие геохимических и метеорологических процессов с биологическими процессами;

· взаимодействие воздуха, воды и почвы в регуляции круговорота в глобальном масштабе.

Основная доступная форма серы – SO42– – восстанавливается автотрофами и включается в белки. Для растений серы требуется меньше, чем азота и фосфора, поэтому лимитирующим фактором она бывает реже. Тем не менее круговорот серы – ключевой в общем процессе продуцирования и разложения биомассы.

Круговороты различных элементов могут оказывать взаимное влияние друг на друга. Например, при образовании в осадках сульфидов железа фосфоров из нерастворимых соединений переходит в растворимые.

В последнее время на круговороты азота и серы все большее влияние оказывает промышленное загрязнение атмосферы. Особенно токсичны соединения азота в форме оксидов NO2 и N2O и серы – в форме SO2 которые являются промежуточными продуктами круговоротов этих элементов. В большинстве местообитаний их концентрация невелика, но в связи с неумеренным сжиганием топлива содержание в воздухе этих соединений, особенно в крупных промышленных центрах, увеличилось до такой степени, что они представляют опасность для важных биотических компонентов экосистемы.

Основным источником соединений азота являются выхлопные газы и другие промышленные выбросы, сернистого газа – продукты сжигания угля.

Особенно большой вред наносит SO2 растениям. Реагируя с водяным паром, он образует слабую серную кислоту, которая выпадает с осадками, известными как «кислотные дожди». Попав на листовую поверхность, H2SO4 вызывает химические ожоги, что снижает фотосинтезирующую поверхность растений.

Оксиды азота раздражают дыхательные пути высших животных и человека. Также следует иметь в виду, что, реагируя с другими соединениями, они могут образовывать соединения с синергическим эффектом, когда взаимодействие продуктов реакции больше суммарного воздействия каждого из реагирующих веществ в отдельности. Например, под действием ультрафиолетового излучения солнца NO2 вступает в реакцию с продуктами неполного сгорания углеводородов. В результате возникает фотохимический смог.

В конечном счете, оксиды азота и серы, попадающие в атмосферу, ухудшают качество жизни.

 



Просмотров 1796

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!