![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Особенности пуска двигателей с постоянными магнитами
Подавляющее большинство синхронных двигателей пускается как асинхронные, для чего они снабжаются пусковой обмоткой. Однако в отличие от двигателей с электромагнитным возбуждением постоянные магниты на время пуска невозможно "отключить". Поэтому в процессе разгона поток постоянных магнитов индуцирует в обмотке статора ЭДС, под действием которой по обмотке через источник протекает ток. Этот ток, взаимодействуя с полем постоянного магнита, создает момент по своей природе аналогичный асинхронному моменту, развиваемому пусковой обмоткой. Однако этот момент является не движущим, а тормозящим. Двигатели с постоянным магнитом бывают только маломощные. 72. Як виникає гістерезисний момент? В гистерезисном двигателе ротор, вращающийся с синхронной скоростью, представляет собой постоянный магнит. Ось магнита из-за явления гистерезиса отстает от оси вращающегося магнитного поля на угол θг гистерезисного сдвига, вследствие чего возникает тангенциальная составляющая fг сил взаимодействия между полюсами ротора и потоком статора (рис. 3.13б). Величина силы fг и создаваемый ею момент не зависят от скорости вращения, а определяются шириной петли гистерезиса ферромагнитного материала. Рис.3.14. Зависимость моментов гистерезисного двигателя от скольжения Если нагрузочный момент больше Мг (рис.3.14), то двигатель перейдет в асинхронный режим работы, т.е. появится дополнительный асинхронный момент Ма. Асинхронный момент Ма есть результат взаимодействия вращающегося магнитного поля с вихревыми токами, которые индуктируются этим полем в сердечнике ротора. Т к. ротор имеет большое активное сопротивление, то характеристика Ма=f(s) практически линейна и асинхронный гистерезисный момент максимален при s=1.
где П2Н - потери на перемагничивание ротора при неподвижном роторе; Пвихр.Н - потери на вихревые токи при неподвижном роторе; 73. При яких ковзаннях діє гістерезісний і асинхронний моменти?
Рис. 7.14. Устройство гистерезисного двигателя с экранированными полюсами: 1 — статор; 2 — обмотка статора; 3 — экранирующие витки; 4 — ротор Ротор гистерезисного двигателя намагничивается под действием магнитного поля статора. При синхронной частоте вращения ротор неподвижен относительно вращающегося магнитного поля статора и ось магнитного поля ротора отстает от оси поля статора на угол θг , вследствие чего возникают тангенциальные составляющие fт сил взаимодействия между ротором и статором (рис. 7.13, а) и вращающий момент Мг . Таким образом, режим работы гистерезисного двигателя при синхронной частоте вращения не отличается от режима аналогичного синхронного двигателя с постоянными магнитами. Максимальное значение угла θг , определяется только свойствами материала ротора; этим же определяется и значение максимального момента Мг в синхронном режиме. Чем шире петля гистерезиса ферромагнитного материала ротора, тем больше угол θг и гистерезисный момент Мг . При асинхронном режиме ротор перемагничивается — при неизменном угле θг и неизменном гистерезисном моменте. При пуске двигателя, когда частота вращения ротора не равна п1 , кроме гистерезисного момента Мг появляется также асинхронный момент Мас , возникающий в результате взаимодействия вращающегося магнитного поля с вихревыми токами индуцируемыми этим полем в роторе. Так как ротор имеет большое активное сопротивление, то зависимость Мас = f(s) близка к линейной, и асинхронный момент имеет максимальное значение при s = 1, т. е. так же, как и в асинхронном двигателе
Рис. 7.13. Схема возникновения гистерезисного момента (а) в зависимость моментов гистерезисного двигателя от скольжения (б)
Гистерезисный момент действует в СМ только при s=0 когда магнитное поле ротора отстает от магнитного поля статора на угол (Тетта), этот угол зависит он материала из которого сделан ротор. При выходе машины из синхронизма , начинает действовать и асинхронный момент вплоть до s=1 где он максимальный.
75. У яких випадках може бути проведена оцінка нагріву двигуна методами еквівалентного струму, моменту, потужності?
76. Укажіть теплові режими роботи двигуна. Различают три основных режима работы двигателей: продолжительный, повторно-кратковременный и кратковременный. Продолжительным называется режим работы двигателя при постоянной нагрузке продолжительностью не менее, чем необходимо для достижения установившейся температуры при неизменной температуре окружающего воздуха. Повторно-кратковременным называется такой режим работы, при котором кратковременная неизменная нагрузка чередуется с отключениями двигателя, причем во время нагрузки температура двигателя не достигает установившегося значения, а во время паузы двигатель не успевает охладиться до температуры окружающего воздуха. Кратковременным называется такой режим, при котором за время нагрузки двигателя температура его не достигает установившегося значения, а за время паузы успевает охладиться до температуры окружающего воздуха. Теплоемкость двигателя – величина значительная, поэтому нагрев его до установившейся температуры может продолжаться несколько часов. Двигатель кратковременного режима за время нагрузки не успевает на-греться до установившейся температуры, поэтому он работает с большей нагрузкой на валу и большей под-водимой мощностью, чем такой же двигатель продолжительного режима работы. Двигатель повторно-кратковременного режима работы также работает с большей нагрузкой на валу, чем такой же двигатель продолжительного режима работы. Чем меньше продолжительность включения двигателя, тем больше допустимая нагрузка на его валу. Для большинства машин (компрессоры, вентиляторы, картофелечистки и др.) применяются асинхрон-ные двигатели общего применения продолжительного режима работы. Для подъемников, кранов, кассовых аппаратов применяются двигатели повторно кратковременного режима работы. Двигатели кратковременного режима работы используются для машин, применяёмых во время ремонтных работ, например электрических талей и кранов.
![]() |