![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Методы фиксированной маршрутизации
Вторую группу методов маршрутизации образуют методы фиксированной маршрутизации (см. рис. 1.39), предполагающие наличие таблицы маршрутизации, которая формируется в узле администратором сети и не изменяется, по крайней мере, в течение длительного периода функционирования сети. Фиксированная маршрутизация может быть: • однопутевая,когда таблица маршрутизации содержит для каждого адреса назначения только один маршрут, и пакеты с одним и тем же адресом назначения направляются всегда к одному и тому же узлу; • многопутевая,когда таблица маршрутизации содержит для каждого адреса назначения несколько маршрутов (адресов соседних узлов), по которым могут быть направлены пакеты с одним и тем же адресом назначения. Достоинством фиксированной маршрутизации, несомненно, следует считать простоту реализации. В то же время существенным недостатком фиксированной маршрутизации является отсутствие гибкости, что проявляется в невозможности изменения маршрутов при изменении состава и топологии сети, а также при отказах узлов и каналов связи. В связи с этим, такие методы маршрутизации могут применяться только в небольших и не изменяющихся в течение длительного промежутка времени сетях. Методы адаптивной маршрутизации Адаптивная или динамическая маршрутизация (рис. 1.39) предполагает оперативное изменение таблиц маршрутизации при изменении состава и топологии сети, а также при отказах узлов и каналов связи. Адаптивная маршрутизация может быть реализована как: • локальная; • распределённая; • централизованная; • гибридная. Локальная маршрутизацияозначает, что таблица маршрутизации изменяется (корректируется) на основе локальной информации о состоянии соответствующего узла, например о загрузке выходных каналов узла или о количестве пакетов, ожидающих в очереди освобождения выходного канала. При этом, если загрузка некоторого канала оказывается значительной, то таблица маршрутизации корректируется таким образом, чтобы выровнять загрузки всех выходных каналов. Недостаток локальной маршрутизации состоит в том, что выбранный на основе локальной информации о состоянии узла маршрут может оказаться плохим, если соседний узел, к которому направляются пакеты, перегружен. При распределённой маршрутизациикорректировка таблицы маршрутизации осуществляется на основе не только локальной информации о состоянии соответствующего узла, но и с учётом состояний соседних узлов сети. Для этого узлы могут обмениваться специальными служебными пакетами, содержащими информацию о состоянии соседних узлов. Недостаток распределённой маршрутизации очевиден - служебные пакеты создают дополнительную нагрузку в каналах и узлах сети, что при неудачной организации может существенно снизить производительность среды передачи данных, измеряемую количество пакетов, передаваемых с сети за единицу времени. Централизованная маршрутизацияпредполагает наличие в сети специально выделенного узла, собирающего и анализирующего информацию о состоянии всех узлов сети. Результаты анализа рассылаются в виде служебных пакетов всем узлам, которые на их основе корректируют свои таблицы маршрутизации. Несмотря на кажущуюся эффективность такой маршрутизации, результирующий эффект может оказаться незначительным и даже привести к снижению эффективности передачи данных по сравнению с распределённой маршрутизацией в связи со значительным ростом числа передаваемых служебных пакетов, существенно загружающих каналы связи и сеть передачи данных в целом. Гибридная маршрутизация представляет собой любую комбинацию рассмотренных выше методов маршрутизации. На практике в современных сетях передачи данных реализованы только некоторые из рассмотренных выше методов маршрутизации, причём конкретная реализация в маршрутизаторах разных фирм может быть различной и часто является секретом фирмы-разработчика. Тема № 9: Задачи управления трафиком. Управление трафиком на высших уровнях OSI-модели Задачи управления трафиком Необходимость управления трафиком в сети обусловлена следующими особенностями,присущими сетевому трафику современных компьютерных сетей: • неоднородность трафика, характеризующаяся наличием в сети нескольких типов данных, которые можно разделить на две большие группы: мультимедийные (речь, аудио и видео) и компьютерные (электронные письма, файлы и т.п.) • наличие различных (дифференцированных) требований к качеству передачи данных разных типов; • случайный характер и нестационарность сетевого трафика, обусловленные изменением интенсивностей потоков данных в различное время суток и непредсказуемостью характера и темпа работы пользователей в компьютерной сети; • в свою очередь, нестационарность сетевого трафика может привести к возникновению в компьютерной сети периодов перегрузок и даже к блокировкам. Блокировки в сети могут возникнуть в результате заполнения буферной памяти узлов. Простейший пример блокировок показан на рис. 1.44, где буферы двух соседних узлов, желающих обменяться пакетами, заполнены до конца. Это приводит к ситуации, когда обмен пакетами невозможен, несмотря на то, что в принципе буферной памяти достаточно для хранения имеющихся пакетов. Однако, для того чтобы
принять пакет от соседнего узла, необходимо иметь хотя бы один свободный буфер. Таким образом, узлы оказываются заблокированными, что может, в конечном счете, привести к остановке (блокировке) всей сети. На рис. 1.45 показана зависимость производительности сети передачи данных, измеряемая количеством пакетов, передаваемых в сети за единицу времени, от количества пакетов, находящихся в сети. Вначале производительность сети передачи данных, как и следовало ожидать, растёт с увеличением количества находящихся в сети пакетов М, достигая при Мпреа некоторого предельного значения, представляющего собой пропускную способность сети. При этом загрузка, по крайней мере, одного из узлов или каналов связи, называемого узким местом, достигает при М= Мпреа значения 1, что приводит к перегрузке сети. Дальнейшее увеличение количества пакетов в сети не приводит к росту производительности, значение которой будет определяться производительностью узкого места. Более того, дальнейшее увеличение количества пакетов в сети ведёт к снижению производительности и даже к прекращению передачи пакетов, то есть к остановке сети, что, в частности, связано с возникающими в сети блокировками. Перечисленные выше особенности компьютерных сетей обусловливают необходимость управления неоднородным трафиком в сети для решения следующих задач: 1) обеспечение надежной передачи данных, предполагающей доставку данных абоненту без потерь и без искажения данных (за счет применения механизмов квитирования и тайм-аута); 2) обеспечение эффективной загрузки дорогостоящего сетевого оборудования (каналов и узлов) сети (за счет реализации механизма скользящего окна и перераспределения потоков данных в процессе адаптивной маршрутизации); 3) малые задержки при передаче по сети сообщений и, прежде всего, мультимедийных (за счет маршрутизации и приоритетов); 4) предотвращение перегрузок и блокировок при передаче данных (за счет приоритетов и ограничения входящего в сеть трафика). Управление потоком данных реализуется на различных уровнях OSI-модели. Ниже рассматриваются некоторые наиболее типичные методы управления трафиком на первых трёх уровнях, а именно: • процедура бит-стаффинга, используемая на физическом уровне; • механизм «скользящего окна», используемый на канальном уровне; • методы маршрутизации, используемые на сетевом уровне.
![]() |