Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Закон Ома для неоднородного и для замкнутой цепи



В неоднородный участок цепи, где действующую э.д.с. на участке 12 обозначим через а приложенную на концах участка разность потенциалов — через j1 —j2.

Если ток проходит по неподвижным проводникам, образующим участок 1—2, то работа А12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q0 на участке 12, согласно (97.4),

Э.д.с. как и сила тока I, величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1—2), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0. За время t в проводнике выделяется теплота

Из формул (100.1) и (100.2) получим

29. . Работа и мощность тока. Закон Джоуля — Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время dt через сечение проводника переносится заряд dq=Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле работа тока

Если сопротивление проводника R, то, используя законОма (98.1), получим

Из (99.1) и (99.2) следует, что мощность тока

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивле­ние — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×103 Дж; 1 кВт×ч=103 Вт×ч= 3,6×106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

 

Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилин­дра совпадает с направлением тока), сопротивление которого По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

Используя дифференциальную форму законаОма (j=gЕ) и соотношение r=1/g, получим

Формулы (99.6) и (99.7) являются обобщенным выражениемзакона Джоуля—Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие элект­рических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагрева­тельных приборов и т. д.

30. Соединение проводников. Температурная зависимость сопротивления металлов.

Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемыхкритическими, характерных для каждого вещества, скачко­образно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным провод­ником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуют­ся керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимо­связи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называютсятермисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

31. Классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения,как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории, можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1×105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость ávñ упорядоченного движения электронов мож­но оценить согласно формуле для плотности тока: j=пeávñ. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концент­рации носителей тока n = 8×1028м–3 средняя скорость ávñ упорядоченного движения электронов равна 7,8×10–4 м/с. Следовательно, ávñ<<áuñ, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость ávñ + áuñ можно заменять скоростью теплового движения áuñ.

Закон Ома.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с иона­ми решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядочен­ного движения становится равной нулю. Следовательно, средняя скорость направлен­ного движения электрона

Классическая теория металлов не учитывает распределения электронов по скоро­стям, поэтому среднее время átñ свободного пробега определяется средней длиной свободного пробега álñ и средней скоростью движения электронов относительно кристаллической решетки проводника, равной áuñ + ávñ (áuñ — средняя скорость теп­лового движения электронов).

Подставив значение átñ в формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получи­ли закон Ома в дифференциальной форме)). Коэффициент пропорциональ­ности между j и E есть не что иное, как удельная проводимость материала

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

 



Просмотров 1130

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!