Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



С-4 путь темновой фазы фотосинтеза. Особенности красуляции как приспособление к экстремальным условиям обитания



Путь С4 получил свое название, т.к. в темновой фазе первичным продуктом фиксации СО2 в этом случае является органическое соединение не с тремя, а с четырьмя атомами углерода (щавелевоуксусная кислота). Таким типом фотосинтеза обладают тропические растения жарких стран, например, бромелиевые. Было давно замечено, что эти растения усваивают СО2 намного лучше С3 растений. В анатомической структуре листьев С4-растений, наряду с нормальными обычными хлоропластами, вокруг сосудистых пучков у них имеются особый вид очень плотных хлоропластов почти без тилакоидов, но наполненных крахмалом. Эти хлоропласты назвали обкладочными.

В обычных хлоропластах у С4 растений, как и положено, протекает световая фаза фотосинтеза, а также происходит фиксация СО2 , но при этом образуется щавелевоуксусная кислота. Такая щавелевоуксусная кислота превращается в яблочную, которая поступает в обкладочные хлоропласты, где сразу расщепляется с выделением СО2. А дальше все идет, как и у нормальных С3 растений. При этом концентрация СО2 в обкладочных хлоропластах в результате становится значительно выше, чем у С3 растений, а очень плотное расположение этих хлоропластов обеспечивает то, что кислорода к ним почти не поступает, межклетников-то нет. Поэтому, раз нет кислорода, а углекислого газа сколько хочешь, фотодыхание не наступает.

Таким образом, у С4 растений и фиксация СО2 происходит более эффективно в виде других соединений, и образование сахаров осуществляется в особых хлоропластах, в результате чего сокращается интенсивность фотодыхания и связанных с ним потерь.

С4 растения могут захлопнуть свои устьица в жару, и не терять такой драгоценной влаги. У них обычно накоплено достаточно СО2 в виде яблочной кислоты.

27. Фотодыхание: биохимические реакции, их локализация. Физиологическая роль фотодыхания.

Фотодыхание – это активируемый светом процесс выделения СО2 и поглощения О2. Первичным продуктом фотодыхания является гликолевая кислота. Фотодыхание усиливается при низком содержании СО2 и высокой концентрации О2 в воздухе. В этих условиях рибулозодисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты.

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется до глиоксиловой кислоты. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО2.

Серин может поступать в пероксисому и передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина

У растений С4-типа выделяющийся при фотодыхании углекислый газ реагирует в клетках мезофилла с фосфоэнолпировиноградной кислотой с образованием щавелевоуксусной и яблочной кислот. Яблочная кислота переходит в клетки обкладки, где служит донором СО2. Растения С3-пути характеризуются высокой интенсивностью фотодыхания. Фосфогликолевая кислота через ряд превращений распадается с выделением С02. Таким образом, при фотодыхании часть промежуточных продуктов фотосинтеза теряется за счет выделения С02. Реакции окисления и карбоксилирования конкурируют друг с другом, а осуществление карбоксилазной или оксигеназной функции зависит от содержания 02 и С02

Фотодыхание снижает эффективность фотосинтеза, приводит к потерям ассимилированного углерода, однако имеет некоторое синтетическое значение. На ранних этапах развития жизни, когда в атмосфере было мало кислорода, рубиско заняло ключевую позицию в фотосинтезе, и ее оксигеназная функция не доставляла проблем. По мере увеличения содержания кислорода потери на фотодыхание нарастали, и у ряда растений возникли механизмы активной доставки к месту работы рубиско углекислого газа (см. C4 и CAM-фотосинтез), увеличивающее долю её карбоксилазной активности до 100%.



Просмотров 2749

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!