![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Формы применения реактопластов. Состав пресспорошков и волокнитов
Получение свойства и области применения полиэтилентерефталата
Полиэтиле́нтерефтала́т (ПЭТФ, ПЭТ) — термопластик, наиболее распространённый представитель класса полиэфиров, известен под разными фирменными названиями (см. Названия). Продукт поликонденсации этиленгликоля с терефталевой кислотой (или её диметиловым эфиром); твёрдое, бесцветное, прозрачное вещество в аморфном состоянии и белое, непрозрачное в кристаллическом состоянии. Переходит в прозрачное состояние при нагреве до температуры стеклования и остаётся в нём при резком охлаждении и быстром проходе через т. н. «зону кристаллизации». Одним из важных параметров ПЭТ является характеристическая вязкость определяемая длиной молекулы полимера. С увеличением присущей вязкости скорость кристаллизации снижается. Прочен, износостоек, хороший диэлектрик. Исследования по полиэтилентерефталату были начаты в 1935 г. в Великобритании Уинфилдом (англ.) (англ. John Rex Whinfield) и Диксоном (англ. James Tennant Dickson), в фирме Calico Printers Association Ltd. Заявки на патенты по синтезу волокнообразующего полиэтилентерефталата были поданы и зарегистрированы 29 июля 1941 года и 23 августа 1943 года. Опубликованы в 1946 году. В СССР был впервые получен в лабораториях Института высокомолекулярных соединений Академии наук СССР в 1949 году. Физические свойства · плотность — 1,38—1,4 г/см³, · tразм. — 245 °C, · Температура плавления tпл. — 260 °C, · Температура стеклования tст. — 70 °C, · Температура разложения — 350 °С Не растворим в воде и органических растворителях, устойчив к воздействию кислот и растворов слабых щелочей (Хим. энц. словарь). Применения В России полиэтилентерефталат используют главным образом для изготовления заготовок (преформ) различного вида, из которых затем изготавливаются (выдуваются после нагрева) пластиковые контейнеры различного вида и назначения (в первую очередь, пластиковые бутылки). В меньшей степени применяется дляпереработки в волокна (см. Полиэфирное волокно), плёнки, а также литьём в различные изделия. В мире ситуация обратная: большая часть ПЭТФ идет на производство нитей и волокон. Многообразно применение заготовок и Полиэтилентерефталата в машиностроении, химической промышленности, пищевом оборудовании, транспортных и конвейерных технологиях, медицинской промышленности, приборостроении и бытовой технике. Для обеспечения лучших механических, физических, электрических свойств РЕТ наполняется различными добавками (стекловолокно, дисульфид молибдена, фторопласт).Полиэтилентерефталат относится к группе алифатически-ароматических полиэфиров, которые используются для производства волокон, пищевых плёнок и пластиков, представляющих одно из важнейших направлений в полимерной индустрии и смежных отраслях. Область применения полиэфиров · самое массовое из всех видов химических волокон для бытовых целей (одежда) и техники; · ёмкости для жидких продуктов питания, особенно ёмкости (бутылки) для различных напитков; · основной материал для армирования автомобильных шин, транспортерных лент, шлангов высоко давления и других резинотехнических изделий; · чрезвычайно важный современный материал для носителей информации — основа всех современных фото-, кино- и рентгеновских плёнок; основа носителей информации в компьютерной технике (гибкие диски — дискеты, или «флоппи-диски»), основа магнитных лент для аудио-, видео- и другой записывающей техники; · материал для ответственных видов изделий в различных отраслях машиностроения, электро- и радиотехнике, например, применяется в качестве изолятора в электрических конденсаторах; · листовой материал, прозрачный для солнечных лучей (в том числе и УФ) и устойчивый к воздействиям окружающей среды, используемый в сельском хозяйстве и строительстве. Недостатки Существенными недостатками ПЭТ-тары являются её относительно низкие барьерные свойства. Она пропускает в бутылку ультрафиолетовые лучи и кислород, а наружу — углекислоту, что ухудшает качество и сокращает срок хранения продукта. Это связано с тем, что высокомолекулярная структура полиэтилентерефталата не является препятствием для газов, имеющих небольшие размеры молекул относительно цепочек полимера. Названия Международный знак ПЭТ В СССР полиэтилентерефталат и получаемое из него волокно называли лавсаном, в честь места разработки — ЛАборатории Высокомолекулярных Соединений Академии Наук. Аналогичные волоконные материалы, изготавливаемые в других странах, получили другие названия: терилен (Великобритания), дакрон (США), тергал (Франция), тревира (ФРГ), теторон (Япония),полиэстер, мелинекс, милар (майлар), Tecapet («Текапэт») и Tecadur («Текадур») (Германия) и т. д. Пластики на основе полиэтилентерефталата называются ПЭТФ (в российской традиции) либо PET/ПЭТ (в англоязычных странах). В настоящее время в русском языке употребляются оба сокращения, однако когда речь идет о полимере, чаще используется название ПЭТФ, а когда об изделиях из него — ПЭТ. Получение Вплоть до середины 1960-х годов ПЭТФ промышленно получали переэтерификацией диметилтерефталата этиленгликолем с получением дигликольтерефталата, и последующей поликонденсацией последнего. Несмотря на недостаток этой технологии, заключавшийся в её многостадийности, диметилтерефталат был единственным мономером для получения ПЭТФ, поскольку существовавшие в то время промышленные процессы не позволяли обеспечить необходимую степень чистоты терефталевой кислоты. Диметилтерефталат же, имея более низкую температуру кипения, легко подвергался очистке методом дистилляции и кристаллизации.[4] В 1965 году Аmoco Соrporation смогла усовершенствовать технологию, в результате чего широкое распространение получил одностадийный синтез ПЭТФ из этиленгликоля и терефталевой кислоты (TFK) по непрерывной схеме.[4]
Формы применения реактопластов. Состав пресспорошков и волокнитов. Реактопласты (термореактивные пластмассы) — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала. Наиболее распространенные реактопласты на основе фенолформальдегидных, полиэфирных, эпоксидных икарбамидных смол (например, углеволокно). Содержат обычно большие количества наполнителя — стекловолокна, сажи, мела и др.Реактопласты (РП)-пластические массы на основе жидких или твердых, способных при нагревании переходить в вязкотекучее состояние, реакционноспособных олигомеров (смол), превращающихся в процессе отверждения при повыш. т-ре и(или) в присут. отвердителей в густосетчатые стеклообразные полимеры, необратимо теряющие способность переходить в вязкотекучее состояние. По типу реакционноспособных олигомеров РП подразделяют на фенопласты (на основе фено-ло-формальд. смол), аминопласты (на основе мочевино- и меламино-формальд. смол), эпоксипласты (на основе эпок-сидных смол), эфиропласты (на основе олигомеров акриловых), имидопласты (на основе олигоимидов или смесей имидообразующих мономеров) и др. Мол. масса олигомеров, тип и кол-во реакционноспособных групп в них, а также природа и кол-во отвердителя определяют св-ва РП на стадиях их получения, переработки в изделия (напр., условия, механизм и скорость отверждения, объемные усадки и выделение летучих в-в), а также эксплуатац. св-ва изделий. Для регулирования технол. св-в РП наиб. широко используют разбавители, загустители и смазки, а для модификации св-в в отвержденном состоянии - пластификаторы и эластифицирующие добавки (напр., жидкие каучуки, простые олигоэфиры), к-рые вводят в олигомер. Ненаполненные РП сравнительно редко используют как самостоят. материалы из-за высоких объемных усадок при отверждении смол и возникающих вследствие этого больших усадочных напряжений. Обычно смолы, содержащие модифицирующие добавки, служат связующими наполненных РП. Дисперсно-наполненные РП получают в виде OT-верждающихся масс (см. Пресспорошки, Премиксы)совмещением связующего с наполнителем в разл. смесителях; такие РП перерабатывают в изделия методами компрессионного или литьевого прессования и литья под давлением, реже заливкой в формы или трансфертам прессованием. Армированные РП получают в виде препрегов-предрари-тельно пропитанных связующим непрерывных волокнистых наполнителей (см. Волокниты, Гетинакс, Слоистые пластики, Сотопласты). Изделия из таких полуфабрикатов формуют методами намотки, выкладки и протяжки с послед. фиксированием их формы путем отверждения связующего. В др. методах заготовки изделий формуют из "сухого" наполнителя, а затем, предварительно вакуумируя, пропитывают их связующим под давлением, после чего уплотняют и отверждают. Из газонаполненных РП наиб. распространение получили пенофенопласты и пенополиуретаны. Осн. преимущества РП по сравнению с ТП-более широкие возможности регулирования вязкости, смачивающей и пропитывающей способности связующего; недостатки обусловлены экзотермич. эффектами, объемными усадками и выделением летучих в-в при отверждении и связанными с этим дефектностью и нестабильностью формы изделий и их хрупкостью. Процессы формования изделий из РП обычно более длительны и трудоемки, чем из ТП. На предельных стадиях отверждения РП не способны к повторному формованию и сварке. Соединение деталей из РП производят склеиванием и мех. методами. При низких степенях отверждения РП способны к т. наз. хим. сварке и приформовке одной детали к другой. ВОЛОКНИТЫ, пресс-материалы, состоящие из коротких волокон (наполнителя), пропитанных полимерным связующим. В состав волокнитов может входить также порошкообразный наполнитель, напр. тальк. В зависимости от природы наполнителя различают: собственно волокниты, наполнителем для к-рых служит целлюлозное, гл. обр. хлопковое, волокно; асбоволокниты (наполнитель - асбестовое волокно; см. Асбопластики); стекловолокниты (наполнитель - стекловолокно); органоволокниты (наполнитель - синтетич. волокно); углеродоволокниты (наполнитель - углеродное волокно). В кач-ве связующего для волокнитов применяют чаще всего феноло-формальд., анилино-феноло-формальд. и эпоксидные смолы, кремнийорг. полимеры. Содержание связующего 30-45% по массе. Волокниты представляют собой рыхлую массу из пропитанных отрезков нитей (т. наз. путанка) или сыпучий материал в виде гранул. Технол. схема получения первых включает пропитку волокон дл. 40-70 мм связующим в лопастных смесителях, сушку и распушение; гранулиров. материал готовят пропиткой прядей из нитей или жгутов на спец. оборудовании, к-рые затем сушат и разрезают на гранулы диам. 0,5-8 мм и дл. 5-6, 10, 20 или 30 мм. Волокниты в виде рыхлой массы перерабатывают в изделия прямым прессованием под давл. 5-50 МПа, в виде гранул-прямым и литьевым прессованием под давл. 20-200 МПа; т-ра переработки 130-200°С в зависимости от типа связующего. Св-ва материалов из волокнитов зависят от природы и длины волокна, типа и содержания связующего, метода и режимов переработки (см. табл.). Изделия из волокнитов устойчивы к действию воды и орг. р-рителей, минер. масел, бензина. Стекловолокниты на основе модифицированной феноло-формальд. смолы работоспособны от — 196 до 200 °С, на основе кремнийорг. связующего - до 400 °С. Вследствие электропроводности углеродных волокон углеродоволокниты не являются диэлектриками.
![]() |