Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Взаимодействие удаленных процессов как основа работы вычислительных сетей



 

Все перечисленные выше цели объединения компьютеров в вычислительные сети не могут быть достигнуты без организации взаимодействия процессов на различных вычислительных системах. Будь то доступ к разделяемым ресурсам или общение пользователей через сеть – в основе всего этого лежит взаимодействие удаленных процессов, т. е. процессов, которые находятся под управлением физически разных операционных систем. Сосредоточимся именно на вопросах кооперации таких процессов, в первую очередь выделив ее отличия от кооперации процессов в одной автономной вычислительной системе (кооперации локальных процессов).

1. Изучая взаимодействие локальных процессов, мы разделили средства обмена информацией по объему передаваемых между ними данных и возможности влияния на поведение другого процесса на три категории: сигнальные, канальные и разделяемая память. Мы фактически классифицировали средства связи по виду интерфейса обращения к ним, в то время как реальной физической основой для всех средств связи в том или ином виде являлось разделение памяти. Семафоры представляют собой просто целочисленные переменные, лежащие в разделяемой памяти, к которым посредством системных вызовов, определяющих состав и содержание допустимых операций над ними, могут обращаться различные процессы. Очереди сообщений и pip базируются на буферах ядра операционной системы, которые опять-таки с помощью системных вызовов доступны различным процессам. Иного способа реально передать информацию от процесса к процессу в автономной вычислительной системе просто не существует. Взаимодействие удаленных процессов принципиально отличается от ранее рассмотренных случаев. Общей памяти у различных компьютеров физически нет. Удаленные процессы могут обмениваться информацией, только передавая друг другу пакеты данных определенного формата через некоторый физический канал связи или несколько таких каналов, соединяющих компьютеры. Поэтому в основе всех средств взаимодействия удаленных процессов лежит передача структурированных пакетов инфо или сообщений.

2. При взаимодействии локальных процессов и процесс-отправитель информации, и процесс-получатель функционируют под управлением одной и той же операционной системы. Эта же операционная система поддерживает и функционирование промежуточных накопителей данных при использовании непрямой адресации. Для организации взаимодействия процессы пользуются одними и теми же системными вызовами, присущими данной операционной системе, с одинаковыми интерфейсами. Более того, в автономной операционной системе передача информации от одного процесса к другому, независимо от используемого способа адресации, как правило , происходит напрямую – без участия других процессов-посредников. Но даже и при наличии процессов-посредников все участники передачи информации находятся под управлением одной и той же операционной системы. При организации сети, конечно, можно обеспечить прямую связь между всеми вычислительными комплексами, соединив каждый из них со всеми остальными посредством прямых физических линий связи или подключив все комплексы к общей шине (по примеру шин данных и адреса в компьютере). Однако такая сетевая топология не всегда возможна по ряду физических и финансовых причин. Поэтому во многих случаях информация между удаленными процессами в сети передается не напрямую, а через ряд процессов-посредников, «обитающих» на вычислительных комплексах, не являющихся компьютерами отправителя и получателя и работающих под управлением собственных операционных систем. Однако и при отсутствии процессов-посредников удаленные процесс-отправитель и процесс-получатель функционируют под управлением различных операционных систем, часто имеющих принципиально разное строение.

3. Вопросы надежности средств связи и способы ее реализации для случая локальных процессов скорее теоретический характер. Мы выяснили, что физической основой «общения» процессов на автономной вычислительной машине является разделяемая память. Поэтому для локальных процессов надежность передачи информации определяется надежностью ее передачи по шине данных и хранения в памяти машины, а также корректностью работы операционной системы. Для хороших вычислительных комплексов и операционных систем мы могли забыть про возможную ненадежность средств связи. Для удаленных процессов вопросы, связанные с надежностью передачи данных, становятся куда более значимыми. Протяженные сетевые линии связи подвержены разнообразным физическим воздействиям, приводящим к искажению передаваемых по ним физических сигналов (помехи в эфире) или к полному отказу линий (мыши съели кабель). Даже при отсутствии внешних помех передаваемый сигнал затухает по мере удаления от точки отправления, приближаясь по интенсивности к внутренним шумам линий связи. Промежуточные вычислительные комплексы сети, участвующие в доставке информации, не застрахованы от повреждений или внезапной перезагрузки операционной системы. Поэтому вычислительные сети должны организовываться исходя из предпосылок ненадежности доставки физических пакетов информации.

4. При организации взаимодействия локальных процессов каждый процесс (в случае прямой адресации) и каждый промежуточный объект для накопления данных (в случае непрямой адресации) должны были иметь уникальные идентификаторы – адреса – в рамках одной операционной системы. При организации взаимодействия удаленных процессов участники этого взаимодействия должны иметь уникальные адреса уже в рамках всей сети.

5. Физическая линия связи, соединяющая несколько вычислительных комплексов, является разделяемым ресурсом для всех процессов комплексов, которые хотят ее использовать. Если два процесса попытаются одновременно передать пакеты информации по одной и той же линии, то в результате интерференции физических сигналов, представляющих эти пакеты, произойдет взаимное искажение передаваемых данных. Для того чтобы избежать возникновения такой ситуации (race condition!) и обеспечить эффективную совместную работу вычислительных систем, должны выполняться условия взаимоисключения, прогресса и ограниченного ожидания при использовании общей линии связи, но уже не на уровне отдельных процессов операционных систем, а на уровне различных вычислительных комплексов в целом.


 

Основные вопросы логической организации передачи информации между удаленными процессами.

 

К числу наиболее фундаментальных вопросов, связанных с логической организацией взаимодействия удаленных процессов, можно отнести следующие:

1. Как нужно соединять между собой различные вычислительные системы физическими линиями связи для организации взаимодействия удаленных процессов? Какими критериями при этом следует пользоваться?

2. Как избежать возникновения race condition при передаче информации различными вычислительными системами после их подключения к общей линии связи? Какие алгоритмы могут при этом применяться?

3. Какие виды интерфейсов могут быть предоставлены пользователю операционными системами для передачи информации по сети? Какие существуют модели взаимодействия удаленных процессов? Как процессы, работающие под управлением различных по своему строению операционных систем, могут общаться друг с другом?

4. Какие существуют подходы к организации адресации удаленных процессов? Насколько они эффективны?

5. Как организуется доставка информации от компьютера-отправителя к компьютеру-получателю через компьютеры-посредники? Как выбирается маршрут для передачи данных в случае разветвленной сетевой структуры, когда существует не один вариант следования пакетов данных через компьютеры-посредники?

Разумеется, степень важности этих вопросов во многом зависит от того, с какой точки зрения мы рассматриваем взаимодействие удаленных процессов. Системного программиста, в первую очередь, интересуют интерфейсы, предоставляемые операционными системами.

Сетевого администратора больше будут занимать вопросы адресации процессов и выбора маршрута доставки данных. Проектировщика сетей в организации – способы соединения компьютеров и обеспечения корректного использования разделяемых сетевых ресурсов. Мы изучаем особенности строения и функционирования частей операционных систем, ответственных за взаимодействие удаленных процессов, а поэтому рассматриваемый перечень вопросов существенно сокращается.

Выбор способа соединения участников сетевого взаимодействия физическими линиями связи (количество и тип прокладываемых коммуникаций, какие именно устройства и как они будут соединять, т. е. топология сети) определяется проектировщиками сетей исходя из имеющихся средств, требуемой производительности и надежности взаимодействия. Все это не имеет отношения к функционированию операционных систем, является внешним по отношению к ним и в нашем курсе рассматриваться не будет.

В современных сетевых вычислительных комплексах решение вопросов организации взаимоисключений при использовании общей линии связи, как правило, также находится вне компетенции операционных систем и вынесено на физический уровень организации взаимодействия.


 

Понятие протокола.

 

Для описания происходящего в автономной операционной системе в было введено понятие «процесс», на котором, по сути дела, базируется весь наш курс. Для того чтобы описать взаимодействие удаленных процессов и понять, какие функции и как должны выполнять дополнительные части сетевых операционных систем, отвечающих за такое взаимодействие, нам понадобится не менее фундаментальное понятие – протокол.

«Общение» локальных процессов напоминает общение людей, проживающих в одном городе. Если взаимодействующие процессы находятся под управлением различных операционных систем, то эта ситуация подобна общению людей, проживающих в разных городах и, возможно, в разных странах.

Каким образом два человека, находящиеся в разных городах, а тем более странах, могут обмениваться информацией? Для этого им обычно приходится прибегать к услугам соответствующих служб связи. При этом между службами связи различных городов (государств) должны быть заключены определенные соглашения, позволяющие корректно организовывать такой обмен. Если В почтовых отправлениях, необходимо договориться о том, что может представлять собой почтовое отправление, какой вид оно может иметь. Помимо формы представления информации необходима договоренность о том, какой служебной информацией должно снабжаться почтовое отправление и в каком формате она должна быть представлена. Адреса, например, в России и в США принято записывать по-разному. Доставка почтового отправления из одного города (страны) в другой требует целого ряда соглашений между почтовыми ведомствами этих городов (стран).

Аналогичная ситуация возникает и при общении удаленных процессов, работающих под управлением разных операционных систем. Здесь процессы играют роль людей, а сетевые части операционных систем – роль соответствующих служб связи. Для того чтобы удаленные процессы могли обмениваться данными, необходимо, чтобы сетевые части операционных систем руководствовались определенными соглашениями, или, как принято говорить, поддерживали определенные протоколы. Понятие шины подразумевает не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам, т. е. в «протокол» мы вкладывали практически тот же смысл.

Необходимо отметить, что и локальные процессы при общении также должны руководствоваться определенными соглашениями или поддерживать определенные протоколы. Только в автономных операционных системах они несколько завуалированы. В роли таких протоколов выступают специальная последовательность системных вызовов при организации взаимодействия процессов и соглашения о параметрах системных вызовов.

При рассмотрении перечисленных выше проблем необходимо учитывать, с какими сетями мы имеем дело. В литературе принято говорить о локальных вычислительных сетях (LAN) и глобальных вычислительных сетях (WAN). Строгого определения этим понятиям обычно не дается, а принадлежность сети к тому или иному типу часто определяется взаимным расположением вычислительных комплексов, объединенных в сеть. Так, например, в большинстве работ к локальным сетям относят сети, состоящие из компьютеров одной организации, размещенные в пределах одного или нескольких зданий, а к глобальным сетям – сети, охватывающие все компьютеры в нескольких городах и более. Есть дополнительный термин для описания сетей промежуточного масштаба – муниципальных или городских вычислительных сетей (MAN) – сетей, объединяющих компьютеры различных организаций в пределах одного города или одного городского района. Т.О., упрощенно можно рассматривать глобальные сети как сети, состоящие из LAN и MAN сетей. А муниципальные сети, в свою очередь, могут состоять из нескольких LAN сетей.


 

127. Многоуровневая модель построения сетевых вычислительных систем. Семиуровневая эталонная модель OSI/ISO.

 

Многоуровневый, подход уровень N системы предоставляет сервисы уровню N + 1, пользуясь в свою очередь только сервисами уровня N – 1. Следовательно, каждый уровень может взаимодействовать непосредственно только со своими соседями, руководствуясь четко закрепленными соглашениями – вертикальными протоколами, которые принято называть интерфейсами.

Самым нижним уровнем в слоеных сетевых вычислительных системах является уровень, на котором реализуется реальная физическая связь между двумя узлами сети. Для обеспечения обмена физическими сигналами между двумя различными вычислительными системами необходимо, чтобы эти системы поддерживали определенный протокол физического взаимодействия – горизонтальный протокол.

На самом верхнем ур. находятся пользовательские процессы, которые инициируют обмен данными. Кол-во и фун-ии промежуточных ур варьируются от одной системы к другой.

На каждом уровне взаимодействия в городе отправителя исходные данные (текст письма) обрастают дополнительной служебной информацией. Соответствующие уровни почтовой службы в городе получателя должны уметь понимать эту служебную информацию. Таким образом, для одинаковых уровней в различных городах необходимо следование специальным соглашениям – поддержка определенных горизонтальных протоколов.

Точно так же в сетевых вычислительных системах все их одинаковые уровни, лежащие выше физического, виртуально обмениваются данными посредством горизонтальных протоколов. Наличие такой виртуальной связи означает, что уровень N компьютера 2 должен получить ту же самую информацию, которая была отправлена уровнем N компьютера 1. Хотя в реальности эта информация должна была сначала дойти сверху вниз до уровня 1 компьютера 1, затем передана уровню 1 компьютера 2 и только после этого доставлена снизу вверх уровню N этого компьютера.

Формальный перечень правил, определяющих последовательность и формат сообщений, которыми обмениваются сетевые компоненты различных вычислительных систем, лежащие на одном уровне, мы и будем называть сетевым протоколом. Всю совокупность вертикальных и горизонтальных протоколов (интерфейсов и сетевых протоколов) в сетевых системах, построенных по «слоеному» принципу, достаточную для организации взаимодействия удаленных процессов, принято называть семейством протоколов или стеком протоколов. Сети, построенные на основе разных стеков протоколов, могут быть объединены между собой с использованием вычислительных устройств, осуществляющих трансляцию из одного стека протоколов в другой, причем на различных уровнях слоеной модели

Эталоном многоуровневой схемы построения сетевых средств связи считается семиуровневая модель открытого взаимодействия систем (Open System INTerconnection – OSI), предложенная Международной организацией Стандартов (International Standard Organization – ISO) и получившая сокращенное наименование OSI/ISO

Уровень 1 – физический. Этот уровень связан с работой hardware. На нем определяются физические аспекты передачи информации по линиям связи, такие как: напряжения, частоты, природа передающей среды, способ передачи двоичной информации по физическому носителю… В компьютерах за поддержку физического уровня обычно отвечает сетевой адаптер.

Уровень 2 – канальный. Этот уровень отвечает за передачу данных по физическому уровню без искажений между непосредственно связанными узлами сети. На нем формируются физические пакеты данных для реальной доставки по физическому уровню. Протоколы канального уровня реализуются совместно сетевыми адаптерами и их драйверами.

Уровень 3 – сетевой. Сетевой уровень несет ответственность за доставку информации от узла-отправителя к узлу-получателю. На этом уровне частично решаются вопросы адресации, осуществляется выбор маршрутов следования пакетов данных, решаются вопросы стыковки сетей, а также управление скоростью передачи информации для предотвращения перегрузок в сети.

Уровень 4 – транспортный. Регламентирует передачу данных между удаленными процессами. Обеспечивает доставку информации вышележащим уровнем с необходимой степенью надежности, компенсируя, быть может, ненадежность нижележащих уровней, связанную с искажением и потерей данных или доставкой пакетов в неправильном порядке. Наряду с сетевым уровнем может управлять скоростью передачи данных и частично решать проблемы адресации.

Уровень 5 – сеансовый. Координирует взаимодействие связывающихся процессов. Основная задача – предоставление средств синхронизации взаимодействующих процессов. Такие средства синхронизации позволяют создавать контрольные точки при передаче больших объемов информации. В случае сбоя в работе сети передачу данных можно возобновить с последней контрольной точки, а не начинать заново.

Уровень 6 – уровень представления данных. Отвечает за форму представления данных, перекодирует текстовую и графическую информацию из одного формата в другой, обеспечивает ее сжатие и распаковку, шифрование и декодирование.

Уровень 7 – прикладной. Служит для организации интерфейса между пользователем и сетью. На этом уровне реализуются такие сервисы, как удаленная передача данных, удаленный терминальный доступ, почтовая служба и работа во Всемирной паутине (Web-браузеры).

Эта модель не предвосхитила появления различных семейств протоколов, таких как, например, семейство протоколов TCP/IP, а наоборот, была создана под их влиянием. Ее не следует рассматривать как готовый оптимальный чертеж для создания любого сетевого средства связи. Наличие некоторой функции на определенном уровне не гарантирует, что это ее наилучшее место, некоторые функции (например, коррекция ошибок) дублируются на нескольких уровнях, да и само деление на 7 уровней носит отчасти произвольный характер. Хотя в конце концов были созданы работающие реализации этой модели, но наиболее распространенные семейства протоколов лишь до некоторой степени согласуются с ней. Она больше подходит для реализации телефонных, а не вычислительных сетей. Ценность предложенной эталонной модели заключается в том, что она показывает направление, в котором должны двигаться разработчики новых вычислительных сетей.


 



Просмотров 1720

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!