Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Вычисления в интерактивном режиме. 3 часть



Наше предположение о точности найденного корня полностью подтверждается.

Графика в системе MATLAB.

1. Построение двумерных графиков функций.В результате вычислений в системе MATLAB обычно получается большой массив данных, который трудно анализировать без наглядной визуализации. Поэтому система визуализации, встроенная в MATLAB, придаёт этому пакету особую практическую ценность.

Графические возможности системы MATLAB являются мощными и разнообразными. В первую очередь целесообразно изучить наиболее простые в использовании возможности. Их часто называют высокоуровневой графикой. Это название отражает тот приятный факт, что пользователю нет никакой необходимости вникать во все тонкие и глубоко спрятанные детали работы с графикой.

Например, нет ничего проще, чем построить график функции одной вещественной переменной. Следующие команды

x = 0 : 0.01 : 2;

y = sin( x );

вычисляют массив y значений функции sin для заданного набора аргументов.

После этого одной единственной командой

 
 

plot( x , y )

удаётся построить вполне качественно выглядящий график функции:

MATLAB показывает графические объекты в специальных графических окнах, имеющих в заголовке слово Figure (изображение, внешний вид, фигура).

При построении графиков функций сразу проявляется тот факт, что очень большую часть работы MATLAB берёт на себя. Мы в командной строке ввели лишь одну команду, а система сама создала графическое окно, построила оси координат, вычислила диапазоны изменения переменных x и y; проставила на осях метки и соответствующие им числовые значения, провела через опорные точки график функции некоторым, выбранным по умолчанию, цветом; в заголовке графического окна надписала номер графика в текущем сеансе работы.

Если мы, не убирая с экрана дисплея первое графическое окно, вводим и исполняем ещё один набор команд

x = 0 : 0.01 : 2;

z = cos( x ); plot( x , z )

 
 

то получаем новый график функции в том же самом графическом окне (при этом старые оси координат и график в нём пропадают - этого можно также добиться командой clf, а командой cla удаляют только график с приведением осей координат к их стандартным диапазонам от 0 до 1):

Если нужно второй график провести "поверх первого графика", то перед исполнением второй графической команды plot, нужно выполнить команду

hold on

 
 

которая предназначена для удержания текущего графического окна. В результате будет получено следующее изображение:

Того же самого можно добиться, потребовав от функции plot построить сразу несколько графиков в рамках одних и тех же осей координат:

x = 0 : 0.01 : 2;

y = sin( x ); z = cos( x );

plot( x , y , x , z )

У такого способа есть ещё одно (кроме экономии на команде hold on) преимущество, так как разные графики автоматически строятся разным цветом.

К недостаткам указанных способов построения нескольких графиков в пределах одних и тех же осей координат относится использование одного и того же диапазона изменения координат, что при несопоставимым значениях двух функций приведёт к плохому изображению графика одной из них.

Если всё же нужно одновременно визуализировать несколько графиков так, чтобы они не мешали друг другу, то это можно сделать двумя способами. Во-первых, можно построить их в разных графических окнах. Например, построив графики функций sin и cos в пределах одного графического окна (показано выше), вычисляем значения для функции exp:

w = exp( x );

После этого выполняем команды

figure; plot( x , w )

 
 

которые построят график функции exp в новом графическом окне, так как команда figure создаёт новое (добавочное) графическое окно, и все последующие за ней команды построения графиков выводят их в новое окно:

В результате в первом графическом окне (Figure No. 1) по вертикальной оси переменные изменяются в диапазоне от -0.5 до 1, а во втором графическом окне (Figure No. 2) - от 1 до 8.

Вторым решением рассматриваемой задачи показа сразу нескольких графиков без конфликта диапазонов осей координат является использование функции subplot. Эта функция позволяет разбить область вывода графической информации на несколько подобластей, в каждую из которых можно вывести графики различных функций.

Например, для ранее выполненных вычислений с функциями sin, cos и exp, строим графики первых двух функций в первой подобласти, а график третьей функции - во второй подобласти одного и того же графического окна:

subplot(1,2,1); plot(x,y,x,z)

subplot(1,2,2); plot(x,w)

 
 

в результате чего получаем графическое окно следующего вида:

Диапазоны изменения переменных на осях координат этих подобластей независимы друг от друга.

Функция subplot принимает три числовых аргумента, первый из которых равен числу рядов подобластей, второе число равно числу колонок подобластей, а третье число - номеру подобласти (номер отсчитывается вдоль рядов с переходом на новый ряд по исчерпанию).

Если для одиночного графика диапазоны изменения переменных вдоль одной или обоих осей координат слишком велики, то можно воспользоваться функциями построения графиков в логарифмических масштабах. Для этого предназначены функции semilogx, semilogy и loglog. Подробную информацию по использованию этих функций всегда можно получитьпри помощи команды

help имя_функции

набираемой с клавиатуры и выполняемой в командном окне системы MATLAB.

Итак, уже рассмотренные примеры показывают, как подсистема высокоуровневой графики MATLABа легко справляется с различными случаями построения графиков, не требуя слишком большой работы от пользователя. Ещё одним таким примером является построение графиков в полярных координатах. Например, если нужно построить график функции r = sin( 3j ) в полярных координатах, то следующие несколько команд

phi = 0 : 0.01 : 2*pi; r = sin( 3* phi );

polar( phi , r )

 
 

решают эту задачу:

 

2. Оформление графиков функций.Сейчас рассмотрим ряд вопросов, связанных с внешним видом графиков функций - цветом и стилем линий, которым проведены сами графики, а также различными надписями в пределах графического окна.

Например, следущие команды

x = 0 : 0.1 : 3; y = sin( x );

plot( x, y, 'r-', x, y, 'ko' )

 
 

позволяют придать графику вид красной сплошной линии, на которой в дискретных

вычисляемых точках проставляются чёрные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как 'r-', что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Второй стиль, помеченный как 'ko' означает проведение чёрным цветом (буква k) окружностей (буква o) на месте вычисляемых точек.

В общем случае, функция

plot( x1, y1, s1, x2, y2, s2, … )

позволяет объединить несколько графиков функций y1(x1), y2(x2),…, проведя их со стилями s1, s2, …

В случае функции вида

plot( x1, y1, s1, x1, y1, s2 )

мы можем провести линию графика единственной функции y1(x1) одним цветом, а точки на нём (вычисляемые точки) - другим цветом.

Стили s1, s2,… задаются в виде набора трёх символьных маркеров, заключенных в одиночные кавычки. Первый (не обязательно по порядку) из этих маркеров задаёт тип линии:

Маркер Тип линии
- непрерывная
-- штриховая
: пунктирная
-. штрих-пунктирная

Второй маркер задаёт цвет:

Маркер Цвет линии
c голубой
m фиолетовый
y жёлтый
r красный
g зелёный
b синий
w белый
k чёрный

Последний маркер задаёт тип проставляемых "точек":

Маркер Тип точки
. точка
+ плюс
* звёздочка
o кружок
x крестик

Можно указывать не все три маркера. Тогда используются необходимые маркеры, установленные "по умолчанию". Порядок, в котором указываются маркеры, не является существенным, то есть 'r+-' и '-+r' приводят к одинаковому результату.

Если в строке стиля поставить маркер типа точки, но не проставить маркер на тип линии, то тогда отображаются только вычисляемые точки, а непрерывной линией они не соединяются.

Наиболее мощным способом оформления графиков функций (и выполнения других графических работ) является дескрипторный метод, полное изучение которого относится к так называемой низкоуровневой графике системы MATLAB и выходит за рамки настоящего пособия. Мы, однако, приведём сейчас (и позже) некоторые простые примеры.

Выше мы оформляли график функции sin с помощью непрерывной красной линии и чёрных кружков. Теперь попробуем ограничиться лишь непрерывной линией, но очень толстой. Как это можно сделать? Вот простое решение на базе дескрипторной графики:

x = 0 : 0.1 : 3; y = sin( x );

hPlot = plot( x, y );

set( hPlot, 'LineWidth', 7 );

Функция plot через опорные (вычисленные) точки с координатами x, y проводит отрезки прямых линий. Прямые линии в системе MATLAB представляют собой графические объекты типа Line. Эти объекты имеют огромное число свойств и характеристик, которые можно менять. Доступ к этим объектам осуществляется по их описателям (дескрипторам; handles).

 
 

Описатель объекта Line, использованного для построения нашего графика, возвращается функцией plot. Мы его запоминаем для дальнейшего использования в переменной hPlot. Затем этот описатель предлагается функции set для опознания конкретного графического объекта. Именно для такого опознанного объекта функция set изменяет характеристики, которые указаны в других аргументах при вызове функции set. В нашем примере мы указали свойство 'LineWidth' (толщина линии), для которого задали новое значение 7 (а по умолчанию - 0.5). В результате получается следующая картина:

Текущее значение любого параметра (атрибута; характеристики) графического объекта можно узнать с помощью функции get. Например, если после получения показанного на рисунке графика ввести и исполнить команду

width = get( hPlot, 'LineWidth' )

то для переменной width будет получено значение 7.

Теперь от оформления непосредственно линий перейдём к оформлению осей системы координат, к надписям на осях и так далее. MATLAB выбирает пределы на горизонтальной оси равными указанным для независимой переменной. Для зависимой переменной по вертикальной оси MATLAB вычисляет диапазон изменения значений функции. Затем этот вычисленный диапазон приписывается вертикальной оси системы координат, так что график функции оказывается как бы вписанным в прямоугольник.

Если мы хотим отказаться от этой особенности масштабирования при построении графиков в системе MATLAB, то мы должны явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции

axis( [ xmin, xmax, ymin, ymax ] )

причём команду на выполнение этой функции можно вводить с клавиатуры сколько угодно раз уже после построения графика функции, чтобы, глядя на получающиеся визуальные изображения, добиться наилучшего восприятия. Такое масштабирование позволяет получить подробные изображения тех частей графика, которые вызывают наибольший интерес в конкретном исследовании. Например, для ранее полученного графика функции sin, можно сузить пределы по осям координат

axis( [ 1.5, 2.5, 0.5, 2 ] )

 
 

чтобы получше разглядеть вершину синусоиды:

Чаще всего этот приём увеличения масштаба изображения применяют при графическом решении уравнений с тем, чтобы получить более высокую точность приближения к корню.

Теперь изменим количество числовых отметок на осях. Их может показаться недостаточно (на горизонтальной оси последнего рисунка их всего три - для значений 1.5 , 2 и 2.5).

Изменить отметки на осях координат можно с помощью функции set, обрабатывающей графический объект Axes. Это объект, который содержит оси координат и белый прямоугольник, внутри которого и проводится сам график функции. Для получения описателя такого объекта применяют функцию gca, которую вызывают без параметров.

В итоге, следующий фрагмент кода

hAxes = gca;

set( hAxes, 'xtick', [ 1.5, 1.75, 2.0, 2.25, 2.5 ] )

выполняющийся после построения графика, устанавливает новые метки на горизонтальной оси координат (пять штук).

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel предназначена для проставления названия горизонтальной оси, функция ylabel - то же для вертикальной оси (причём эти надписи ориентированы вдоль осей координат).

Если требуется разместить надпись в произвольном месте рисунка - применяем функцию text:

text( x, y, 'some text')

Общий заголовок для графика проставляется функцией title. Кроме того, используя команду

grid on

можно нанести измерительную сетку на всю область построения графика. Применяя все эти средства

title( 'Function sin(x) graph' );

xlabel( 'x coordinate' ); ylabel( 'sin(x)' );

text( 2.1, 0.9, '\leftarrowsin(x)' ); grid on;

 
 

придаём графику функции следующий вид:

 

Надпись функцией text помещается, начиная от точки с координатами, указанными первыми двумя аргументами. Специальные символы вводятся внутри текста после символа \ ("обратная косая черта"). В примере мы ввели таким образом специальный символ "стрелка влево". Обозначения для специальных символов совпадают с таковыми в системе подготовки научных текстов TeX.

3. Трёхмерная графика.Графики функций двух переменных представляют из себя куски поверхностей, нависающие над областями определения функций. Отсюда ясно, что изображение графиков функций двух переменных требует реализации "трёхмерной графики" на плоском экране дисплея компьютера.

Высокоуровневая графическая подсистема MATLABа автоматически реализует трёхмерную графику без специальных усилий со стороны пользователя. Пусть в точке с координатами x1,y1 вычислено значение функции z=f(x,y) и оно равно z1. В некоторой другой точке (то есть при другом значении аргументов) x2,y2 вычисляют значение функции z2. Продолжая этот процесс, получают массив (набор) точек (x1,y1,z1), (x2,y2,z2), … (xN,yN,zN) в количестве N штук, расположенных в трёхмерном пространстве. Специальные функции системы MATLAB проводят через эти точки гладкие поверхности и отображают их проекции на плоский дисплей компбютера.

Чаще всего точки аргументов расположены в области определения функции регулярно в виде прямоугольной сетки (то есть матрицы). Такая сетка точек порождает две матрицы одной и той же структуры: первая матрица содержит значения первых координат этих точек (x - координат), а вторая матрица содержит значения вторых координат (y - координат). Обозначим первую матрицу как X, а вторую - как Y. Есть ещё и третья матрица - матрица значений функции z=f(x,y)при этих аргументах. Эту матрицу обозначим буквой Z.

Простейшей функцией построения графика функции двух переменных в системе MATLAB является функция

plot3( X , Y , Z )

где X, Y и Z - матрицы одинаковых размеров, смысл которых мы только что объяснили.

       
 
   
 

В системе MATLAB имеется специальная функция для получения двумерных массивов X и Y по одномерным массивам x, y.

 
 

Пусть по оси x задан диапазон значений в виде вектора

u = -2 : 0.1 : 2

а по оси y этот диапазон есть

v = -1 : 0.1 : 1

Для получения матриц X и Y, представляющих первые и вторые координаты получающейся прямоугольной сетки точек используют специальную функцию системы MATLAB:

[ X , Y ] = meshgrid( u, v )

Как мы видим, эта функция получает на входе два одномерных массива (вектора), представляющие массивы точек на осях координат, и возвращает сразу два искомых двумерных массива. На прямоугольной сетке точек вычисляем значения функции, например функции exp:

Z = exp( - X.^2 - Y.^2 )

 
 

Наконец, применяя описанную выше функцию plot3,получаем следующее изображение трёхмерного графика этой функции:

Из этого рисунка видно, что функция plot3 строит график в виде набора линий в пространстве, каждая из которых является сечением трёхмерной поверхности плоскостями, параллельными плоскости yOz. По-другому можно сказать, что каждая линия получается из отрезков прямых, соединяющих набор точек, координаты которых берутся из одинаковых столбцов матриц X, Y и Z. То есть, первая линия соответствует первым столбцам матриц X, Y Z; вторая линия - вторым столбцам этих матриц и так далее.

Для построения трёхмерных линий, задаваемых параметрически применяется другая форма вызова функции plot3:

plot3( x, y, z )

где x, y и z являются одномерными массивами координат точек, которые и нужно последовательно соединить отрезками прямых. Например, следующий фрагмент кода

t = 0 : pi/50 : 10*pi ;

x = sin( t );

y = cos( t );

plot3( x , y , t );

grid on

где применена известная по плоским графикам команда

grid on

 
 

для проставления сетки координатных значений в области построения графика (также допустимо использовать команды и функции по оформлению графиков, ранее рассмотренные для "плоского" случая), позволяет построить винтовую линию, изображение которой показано на следующем рисунке:

Помимо этой простейшей функции система MATLAB располагает ещё рядом функций, позволяющих добиваться большей реалистичности в изображении трёхмерных графиков. Это функции mesh, surf и surfl.

Функция mesh соединяет вычисленные соседние точки поверхности графика отрезками прямых и показывает в графическом окне системы MATLAB плоскую проекцию такого объёмного "каркасно-ребристого" ( по-английски зовётся wireframe mesh) тела. Вместо ранее показанного при помощи функции plot3 графика функции

exp( - X.^2 - Y.^2 )

 
 

можно получить вот такое изображение

 
 

Для лучшего восприятия "объёмности" изображения разные рёбра автоматически окрашиваются в разные цвета. Кроме того (в отличие от функции plot3) осуществляется удаление невидимых линий. Если вы считаете, что изображённое ребристое тело является прозрачным и не должно скрывать задних линий, то можно ввести команду hidden off , после чего такие линии появятся на изображении. Более плотного изображения поверхности можно добиться, если вместо функции mesh применить функцию surf( X, Y, Z ).

В результате получается следующее изображение представляющее плотную (непрозрачную) сетчатую поверхность, причём отдельные ячейки (грани) этой сетчатой поверхности (плоские четырёхугольники) автоматически окрашиваются в разные цвета.

С помощью функции surf получаются хотя и искусственно раскрашенные, но весьма наглядные изображения. Если же мы хотим добиться более естественных и объективных способов окрашивания поверхностей, то следует использовать функцию surfl.

Функция surfl трактует поверхность графика как материальную поверхность с определёнными физическими свойствами по отражению света. По умолчанию задаётся некоторый источник света, освещающий такую материальную поверхность, после чего рассчитываеются траектории отражённых лучей, попадающих в объектив условной камеры. Изображение в такой камере и показывается в графическом окне системы MATLAB.

Так как разные материалы по-разному отражают падающие лучи, то можно подобрать некоторый материал, чтобы получить наилучшее (с точки зрения пользователя) изображение. В частности, можно использовать функцию

colormap( copper )

с помощью которой для изображения графика выбирается набор цветов (по-английски - colormap), который характерен для света, отражающегося от медной поверхности (медь по-английски - copper). После этого применение функции

surfl( X, Y, Z )

 
 

вместо surf(X,Y,Z) приводит к получению очень реалистически выглядящего и очень наглядного графика:

 

Можно с такого графика убрать чёрные линии, изображающие рёбра, а также добиться ещё более плавного перехода освещения поверхности, если выполнить команду

shading interp

означающую, что теперь цвет (освещённость) будет меняться даже внутри отдельных граней (ячеек). В итоге будет получаться совсем уж реальное изображение некоторой объёмной фигуры. Лучше это или хуже для задачи изображения графиков функций двух переменных - судить конкретному пользователю.

4. Положение камеры и вращение трёхмерных графиков.Многие приёмы оформления трёхмерных графиков совпадают с теми, что были рассмотрены при изучении плоских графиков функций одного переменного. В частности, для масштабирования удобно использовать функцию axis, которая в трёхмерном случае принимает уже три пары скалярных аргументов:

axis( [ xmin, xmax, ymin, ymax, zmin, zmax ] )

По-прежнему можно использовать функции text, xlabel, ylabel, zlabel, title, а также можно наносить отметки на осях координат с помощью функции set. Можно также с помощью функции subplot разместить в одном графическом окне несколько трёхмерных графиков.

К новым методам дополнительного оформления трёхмерных графиков можно отнести возможность вызывать функцию mesh с суффиксами z и c (meshz и meshc), а функцию surf с суффиксом c (surfc). Использование суффикса z приводит к построению "графика с пьедесталом". Например, фрагмент кода

[X,Y] = meshgrid( -2 : 0.1 : 2 );

Z = X .* exp( - X.^2 - Y.^2 );

meshz( X, Y, Z )

 
 

строит следующий график:

 

Функции с суффиксом c помимо собственно трёхмерного графика строят ещё и так называемые линии уровня. Например, следующий фрагмент

[X,Y,Z] = peaks(30); surfc(X,Y,Z);

colormap( hsv ); axis([-3 3 -3 3 -10 5]);

 
 

приводит к изображению:

 

Функция с именем peaks (является некоторой масштабированной комбинацией стандартных гауссовых функций) часто применяется в справочной системе MATLABа для наглядной иллюстрации графических функций.

Наконец, для трёхмерных графиков существует возможность изменять точку обзора графика, то есть положение условной камеры. Положение камеры опеределяется углом азимута (часто обозначают az) и углом возвышения (часто обозначают el). Изменение первого угла означает вращение плоскости xOy вокруг оси Oz против часовой стрелки. Угол возвышения есть угол между направлением на камеру и плоскостью xOy.

Когда выполняются функции mesh или surf, то по умолчанию устанавливаются значения az = -37.5°, el = 30°. Эти значения в любой момент времени можно изменить функцией

view( [ az , el ] )

где названия аргументов говорят сами за себя. В частности, если после построения показанного выше графика функции

X .* exp( - X.^2 - Y.^2 )

выполнить команду

view( [ -15 , 20 ] )

 
 

то график изменит свой вид:

Комбинируя вызов различных функций ситемы MATLAB и выбирая различные варианты закраски и угла просмотра, можно добиться оптимального вида трёхмерных графиков.

5. Сохранение в файлах и передача в другие программы графических изображений MATLABа.Получив удачное изображение мы можем захотеть сохранить его для будущих просмотров в системе MATLAB, а также, возможно, и в других приложениях.

Самым простым способом сохранения графического изображения является использование команды меню Edit | Copy Figure, в результате чего изображение (это клиентская часть графического окна MATLABа) будет сохранено в буфере обмена операционной системы Windows (Clipboard). После этого вы можете вставить это изображение в документ редактора Word командой меню Paste последнего. Вместе со всем документом это изображение, полученное первоначально в системе MATLAB, можно будет распечатать на принтере.

Вместо использования команды меню графического окна можно из командного окна системы MATLAB выполнить команды

print -dbitmap или print -dmeta

причём вторая команда сохранит изображение в буфере обмена в формате Windows Metafile вместо формата Bitmap.

Аналогично созданное в системе MATLAB изображение можно будет командой Paste вставить в редактируемое изображение простого графического редактора Paint, входящего в поставку операционной системы Windows. В результате вы можете смонтировать изображение, полученное в системе MATLAB с другими изображениями программы Paint.

Ещё более мощные средства редактирования и монтажа изображений можно применить, если вставить командой Paste изображение MATLABа в известнейшей программе растровой графики. После этого в ваших руках будут практически неограниченные возможности дальнейшего редактирования изображений, а также сохранения их в файлах различных форматов и печати на разнообразных принтерах (в том числе и на профессиональных типографских).

Часто, однако, бывает удобно сохранить полученное в MATLABе изображение в файле некоторого известного графического формата. Это легко сделать командами

print -options FileName

где вместо options надо подставить заданный идентификатор для конкретной ситуации.



Просмотров 1087

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!