Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Легенда о Галилее и Пизанской башне



Исследования, выполненные в парадигме естественной науки, весьма отличаются от исследований, выполненных в парадигме эмпирической науки. Сравним, например, как работали эмпирические предшественники Г. Менделя и сам основатель генетики, чья работа выполнена уже в естественнонаучной парадигме. К. Ф. Гэртнер осуществил более 10 тысяч опытов по скрещиванию растений, относящихся к 700 видам, и получил более 250 различных гибридных форм. В результате подобной деятельности ввиду противоречивости всех выделенных «эмпирических закономерностей» в среде биологов вообще возникли сомнения в реальности существования полов у растений. …

А вот начал работу Г. Мендель. Первое – он поставил перед собой иную цель: установить «всеобщий закон образования и развития гибридов», поскольку «единство плана развития органической жизни стоит вне сомнений». Поскольку, по определению, всеобщие законы никогда не могут быть доказаны экспериментально, то уже очевидно, что главное в замысле Менделя – не количество измерений, а логическая обоснованность полученных результатов. Второе – в течение двух лет он осуществлял отбор растительного материала для последующих опытов. Столько времени на сбор материала можно тратить только в том случае, если заранее определена исследовательская программа. Мендель выбирает для последующего размножения и гибридизации растения, у которых имеются устойчиво различающиеся признаки – такие, что существование потомков, обладающих всеми этими признаками одновременно, логически невозможно (признаки-антагонисты). Это требование, предопределившее успех исследования, вытекает из цели: все равно, какие растения исследовать, коли законы, по предположению, носят всеобщий характер, а следовательно, лучше выбирать такие объекты для скрещивания, на которых наследование признаков от родительской пары будет проявляться эмпирически однозначно. Третье – в исследовании регистрируется наличие или отсутствие у растений признаков-антагонистов, присущих в разных комбинациях их родительской паре. Надеяться с помощью такой регистрации на открытие всеобщего закона – это явно или неявно предполагать дискретный характер наследования признаков, т. е. заведомо предполагать существование генов.

… Вначале считали, что Мендель сформулировал свои законы только после получения эмпирических данных и лишь затем проверил их в дополнительных исследованиях. Теперь же большинство историков полагают такую последовательность событий невероятной и настаивают на том, что он уже на стадии планирования эксперимента с самого начала знал, что именно хочет получить. Они уверены, что эмпирическим путем (путем накопления данных и их индуктивного обобщения) законы вообще не открывают (хотя при этом никто, разумеется, не отрицает, что сами эмпирические данные, конечно же, могут побуждать исследователей к угадыванию новых, ранее не приходивших в голову закономерностей). Они уверяют: законы генетики (как, впрочем, и любые иные законы) не могли быть получены в качестве непосредственного эмпирического обобщения. Либо Мендель изначально опирался на еще весьма смутные догадки о законах наследования, и тогда для их вербализации эмпирическая фаза была необходимой. Либо он вообще до всякого опыта угадал вид генетических законов, и тогда в своих исследованиях выступал как экспериментатор, лишь проверяющий свои гипотезы.

Вообще в истории естественной науки существует много легенд. … Вот классическая легенда об открытии одного из самых первых естественнонаучных законов – закона о скорости свободного падения тел, связанного с именем Г. Галилея. (Подразумеваемые этой легендой мифы о естественной науке я буду выписывать в скобках.)

Итак, Галилей якобы заинтересовался траекторией движения артиллерийского снаряда. Он долго наблюдал за этим движением и пришел к выводу, что одной из его составляющих было свободное падение.

(Отсюда миф: проблемы, которыми занимается естественная наука, направлены на решение актуальных практических задач. Поэтому даже в диссертационных исследованиях, посвященных вроде бы заведомо фундаментальным проблемам психологии, положено писать всякую лабуду об актуальности и практической значимости этих исследований.)

Исходя из наблюдений над предметами, скользящими по наклонной плоскости, Галилей приходит к выводу, что расстояние, проходимое телом при свободном падении, пропорционально квадрату времени свободного падения.

(Отсюда миф: ученый не измышляет законов, а обнаруживает их в фактах. Показательно: Гегель, который обычно никому, кроме себя, не верит, вдруг поверил Ньютону и, не разобравшись в сути того, о чем пишет величайший физик, даже назвал его «индуктивным ослом». Пожалуй, нужно быть таким «дедуктивным бараном», как Гегель, чтобы не заметить всю нелепость этого мифа. Представьте себе, говорит А. В. Юревич, что бы произошло, если бы Ньютон попытался открыть закон всемирного тяготения, исходя из индуктивных соображений, например, принятым в психологии способом – путем исчисления корреляций. Юревич цитирует К. Поппера: «Реальные яблоки никоим образом не являются ньютоновскими. Они обычно падают, когда дует ветер». И добавляет от себя: а также тогда, когда кто-то трясет яблоню. Именно эти два фактора наверняка оказались бы наиболее значительно коррелирующими с падением яблок, и Ньютону пришлось бы объяснить это явление силой ветра и силой человека, а не силой земного притяжения.)

Из формулы Галилея получается, что скорость падения зависит только от времени падения. Этот вывод, однако, находится в противоречии с положением Аристотеля о том, что скорость падения прямо пропорциональна массе падающего тела. Тогда для доказательства своего утверждения Галилей залезает на ставшую после этого знаменитой наклонную Пизанскую башню и сбрасывает с нее мушкетную пулю и пушечное ядро. Результат этого эксперимента окончательно доказал преимущество галилеевской физики над аристотелевской.

(Отсюда миф: при выборе из нескольких теорий решающее слово принадлежит эксперименту. Теории опровергаются или принимаются в зависимости от их способности выдерживать экспериментальную проверку. Этот миф полностью противоречит истории науки. В реальности ни одна теория не была опровергнута экспериментом. Да иначе и быть не может: если у теории нет явных альтернатив, то опровергающие свидетельства не могут привести к отвержению теории. Теория, как уже говорилось, опровергается другими теориями, а не экспериментом) …

Прежде всего, признаемся, что ученому-естественнику предначертано решать загадки природы, а не выполнять военные или иные заказы. Вдохновение не продается (хотя, конечно, как провозглашал А. С. Пушкин, достигнутые результаты творческого труда продавать не зазорно). Правда, сам заказ иногда может стимулировать вдохновение (типичный пример – открытие Архимедом своего закона). В конце концов, творческие всходы не ведают стыда и не так важно, говаривала А. Ахматова, из какого сора они произрастают. Внешняя ситуация вполне может быть поводом для раздумий. Но и только. Да, первые работы Галилея были связаны с задачами фортификации. Ну и что? В чем при этом заключалась практическая ценность наблюдений за полетом снарядов? Весьма маловероятно, даже невозможно, что пропорциональность пройденного пути квадрату времени свободного падения могла быть установлена в результате индуктивного обобщения данных. Все, скорее всего, было наоборот. Галилей, предположил, что траектория движения брошенного под углом вверх тела описывается параболой. А вот далее для проверки справедливости сделанного предположения он и наблюдал за снарядом, выпущенным из пушки. А далее, уже опираясь на уже хорошо разработанные к тому времени математические конструкции, строго дедуктивно вывел свою формулу.

… Для Галилея, как полагают некоторые комментаторы, исходной проблемной ситуацией была следующая. Галилей знал, что теория Аристотеля о падении тел ведет к противоречию. Допустим, в полном соответствии с обыденным опытом, что тяжелое тело падает быстрее легкого. Порассуждаем: что произойдет, если оба тела скрепить вместе? С одной стороны, более легкое тело должно замедлять свободное падение тяжелого, и поэтому вся связка должна падать медленнее, чем одно тяжелое тело. Но, с другой стороны, оба тела вместе тяжелее одного тяжелого тела, а потому эта связка должна падать быстрее. Противоречие разрешается, если допустить (вслед за Демокритом), что оба тела падают с одинаковой скоростью. Само по себе это рассуждение не является доказательством ошибочности теории Аристотеля. Не случайно сторонники данной теории не обращали особого внимания на это противоречие. Логика – это всего лишь логика, и разных логичных рассуждений может быть много. А вот за теорией Аристотеля стоит многократно подтвержденная эмпирика.

Многие современные комментаторы уверены: Галилей не сбрасывал предметов с Пизанской башни … С наклонных башен в Пизе и Болонье сбрасывали тяжелые и легкие шары Раньери и Риччоли. Их эксперименты (как, кстати, и опыты Леонардо да Винчи, весьма точные для своего времени) как раз подтверждали «теорию» Аристотеля. Да иначе и быть не могло! Ведь высказывание Галилея верно лишь при отсутствии сопротивления среды, чего в реальности, разумеется, не бывает. И Галилей заранее знал, что подобный опыт не может доказать его позицию.

Галилей же больше доверял логике (математике), чем опыту. Именно математическая гармония, полагал он, соответствует Божественной гармонии мира. Математическое знание, писал он в «Диалогах», равно по достоверности знанию Божественному. Поэтому теорема Аполлония о параболе для него более соответствует реальности, чем интерпретация результатов любых экспериментов. Но все-таки: почему же в опыте все выглядит иначе? На результат опыта влияет сила сопротивления среды, которая всегда присутствует в реальности. Как же можно эмпирически показать, что в отсутствии сопротивления среды теория Аристотеля не работает? Вот подлинная головоломка, которую решал Галилей!

И нашел решение. Его идея: хотя сопротивление среды никогда нельзя полностью исключить, но его можно уменьшить. Чем слабее будет сопротивление среды, тем ближе окажутся результаты опыта к его формуле. Так Галилей стал изучать движение тела по наклонной плоскости, разложив это движение на две составляющие: горизонтальное движение и свободное падение. Он полагал, что при небольшой скорости сопротивлением воздуха можно пренебречь, а если поверхности тела и наклонной плоскости сделать достаточно гладкими, то и трение тела о наклонную плоскость не будет играть заметной роли. В этих условиях он провел исследование и полагал, что получил экспериментальное подтверждение своих математических выкладок …

Подытожим путь, пройденный Галилеем в открытии закона свободного падения. Прежде всего, Галилей наблюдает и одновременно пытается постичь природу логическим (для него это значит – математическим) путем. Так он видит в движении летящего снаряда не просто красивую и загадочную кривую, но параболу (хотя ни одна реальная траектория, конечно же, не будет строгой параболой). Чисто математическим трюком выводит формулу свободного падения. До Возрождения на этом можно было бы остановиться. Скорее всего, ранее никому бы не пришло в голову проверять доказательство теоремы в опыте, ведь это только затемняет строгость рассуждения. Поясню эту мысль известным историческим анекдотом. Говорят, однажды Альберт Великий и его не менее великий ученик Фома Аквинский заспорили: есть ли глаза у слепого крота? Мимо спорящих проходил садовник. Он решил им помочь и предложил: давайте я выкопаю и принесу вам крота, вы посмотрите и разрешите свой спор. Да ты что? – вскричали титаны мысли Средневековья. – Нас не интересует живой крот. Нам важно понять, есть ли принципиальные глаза у принципиального крота!

Теперь же настала другая эра. Галилей: «Я допускаю, что выводы, сделанные абстрактным путем, оказываются в конкретных случаях далекими от действительности и столь неверными, что ни движение в поперечном направлении не будет равномерным, ни ускоренное движение при падении не будет соответствовать выведенной пропорции, ни линия, описываемая брошенным телом, не будет параболой и т. д. ...Для научного трактования необходимо сперва сделать отвлеченные выводы, а сделав их, проверить в тех пределах, которые допускаются опытом».

Только с понимания двойственной природы исследования, в котором необходимо сочетаются логика и опыт, и зачинается естественная наука. Отсюда возникает главное нормативное требование естественных наук: логические рассуждения должны быть проверены в опыте, а опытные наблюдения должны независимо обосновываться логическим путем.Ученый как бы пытается догадаться о правилах игры, по которым играет природа (что, собственно, и есть логическое описание), и проверить, правильно ли он догадался. Из высказанного требования вытекают, по существу, все методологические принципы естественных наук, провозглашаемые как методологами науки, так и самими представителями этих наук.

 

Принципы естественной науки

Принцип рациональности.Требование, чтобы все явления (в частности, все психические явления) были обоснованы логически, побуждает ученого принять следующие предположения: 1) все явления в мире в принципе подлежат непротиворечивому описанию; 2) логическая конструкция, которая способна эти явления непротиворечиво описать, может быть создана человеческим разумом. Обсуждаемый принцип не утверждает, что в мире все на самом деле рационально и что человек действительно в состоянии все понять (утверждения такого типа не могут претендовать на истинность хотя бы потому, что они не могут быть проверены). Просто ученый должен действовать так, как будто мир рационально организован, а люди способны догадаться о принципах построения мира. Тем не менее сделанные предположения, как показывает история науки, способствуют прогрессу знания. Соответственно, естественнонаучный подход не запрещает иррациональный взгляд на мир (и в частности, на психику), даже не объявляет его неверным. Иррационалисты с пользой для человечества могут писать книги, читать проповеди или разводить пчел. Они могут даже быть великими психологами-практиками. Единственное занятие, им наверняка противопоказанное, – это занятие теоретической наукой.

Принцип редукции.Научная теория всегда сводит объясняемое к каким-то основаниям, признанным заранее верным. Такова природа логики. Раньше этот принцип формулировался как вытекающий из объективного описания законов природы (принцип детерминизма: все явления в мире имеют причины) и познающего сознания (принцип познаваемости: эти причины в принципе постижимы). Ярким приверженцем такой точки зрения в психологии был 3. Фрейд. Он писал: «В области психического нет ничего произвольного, недетерминированного». Именно поэтому для него не существовало ни случайных ошибок, ни непреднамеренных действий. Однако такой жесткий детерминизм нереалистичен и даже опасен.

Во-первых, само понятие причины не слишком понятно. Например, человек включил настольную лампу. Что послужило причиной того, что загорелся свет: нажатие кнопки? наличие электрической цепи? существование электромагнитного поля и его законов? технические разработки, приведшие к созданию этой лампы? желание человека зажечь свет? движение пальца, приведшего к нажатию кнопки? команда мышцам, которая привела к этому движению пальцем? Невозможно даже перечислить все остальные необходимые условия, без наличия которых свет бы никогда не загорелся. Как же выбрать из бесконечного числа этих условий такое, которое можно было бы назвать подлинной причиной объясняемого явления? Ответ таков (если, конечно, не цитировать упражнения Аристотеля на эту тему): выбор определяется «сугубо прагматическими соображениями», т. е. пользой данного выбора для практической деятельности или теоретического исследования. Во-вторых, вопреки позиции 3. Фрейда или, например, А. Эйнштейна, заявлявшего, что Бог не играет в кости, сегодня мало кто сомневается в том, что природа делает случайные выборы, что она не жестко детерминирована. Тем не менее признание этого не запрещает логического описания природы: просто тогда сам процесс случайного выбора становится основанием для объяснения тех или иных явлений.

Какое основание ни было бы выбрано (или какая бы причина ни была бы выявлена), всегда возможен вопрос об обосновании выбранных оснований, или о причине найденной причины. Поэтому в поиске оснований (или причин) научная теория обязана где-нибудь остановиться. Выбор такой остановки может быть разным, но он обязательно должен быть сделан. Психологи для обоснования изучаемых явлений избирали в качестве не требующих доказательства оснований либо заимствования из других наук (из физики, биологии, физиологии, социологии и пр.), либо собственно психологические основания (разные в разных школах: само сознание, бессознательное и т. д.). Когнитивизм, с которым я в этом солидаризируюсь, в качестве основания для объяснения психических явлений выбрал логику познания. Могут делаться и смешанные выборы. …

Принцип идеализации.Невозможно построить строгую логическую систему, которая включала бы все факторы, влияющие на изучаемый процесс. Поэтому выбираются только те, которые, по мнению автора теории, позволяют увидеть сущность процесса «в чистом виде». Логические рассуждения строятся отнюдь не для реальных объектов, а для объектов несуществующих, или, как говорят методологи науки, идеализированных. Отсюда в науке появляются такие невозможности, как не имеющая длины и ширины материальная точка, как совсем не деформируемое при сжатии абсолютно упругое тело и пр. Или в случае Галилея: идеальные поверхности, не создающие при движении по ним силу трения; математические параболы вместо реальных траекторий движения падающих тел. Разве можно – принимая первый закон Ньютона – найти на Земле такое тело, чтобы на него не действовали никакие силы или хотя бы чтобы равнодействующая всех приложенных к нему сил была равна нулю? Необходимость введения заведомо не существующих идеализированных объектов предопределена задачей логического описания сложных процессов. Идеализированные объекты как раз и позволяют описывать процессы в настолько упрощенном виде, чтобы можно было использовать логические и математические конструкции.

Этим объектам приписывается поразительное свойство – не обладать чем-то таким, без чего объект в реальности существовать не может. Именно идеализированные объекты играют роль фундаментальной идеи, на которую опирается все здание теории, задают, как говорят, «онтологию теории», позволяют увидеть процесс в не замутненном несущественными обстоятельствами виде. Б. С. Грязнов остроумно определяет науку не как реалистическое изображение действительности, а как шарж, карикатуру, которая намеренно выпячивает, подчеркивает одни черты реальности, пренебрегая другими. Выбор идеализированного объекта – всегда рискованный акт для ученого, потому что он заведомо неверен, но может принести удивительные плоды, если этот выбор будет удачным. Идеализированные объекты не имеют ничего общего с идеалами в гуманитарных науках, в них никак не отражаются желания исследователя. Ну кому, в самом деле, так уж хотелось, чтобы материальная точка не имела длины?

Психологи помещают в свои сборники статьи, в которых обосновывается необходимость введения идеализированных объектов, однако не вводят эти объекты в свои теории. Соответственно, в психологии и не было подлинных естественнонаучных теорий. При построении собственной концепции мне пришлось сделать выбор идеализированного объекта, но об этом речь пойдет в следующей главе.

Принцип простоты.Уже величайший астроном древности К. Птолемей удачно сформулировал обсуждаемый принцип: «Явления надо объяснять более простыми гипотезами, если они ни в чем существенном не противоречат наблюдениям». В Средние века эта же идея известна как «бритва У. Оккама»: «Не вводите сущностей превыше необходимого». В Новое время сам Исаак Ньютон объявил как правило умозаключений в науке: «Природа проста и не роскошествует излишними причинами явлений». Методологи науки долго спорили, в чем значение принципа простоты. Ну действительно, не всякое же простое объяснение заведомо лучше сложного! В конце концов, удивленно восклицал М. Бунге, классическая механика во всех отношениях проще квантовой, но из этого ведь не следует, что она самая истинная. …. И тем не менее все реально работающие естественники всегда опирались на этот принцип: при прочих равных условиях всегда следует предпочитать наиболее простые объяснения.

На мой взгляд, принцип простоты выступает своеобразным аналогом принципа смыслового совершенства в гуманитарных науках. Ведь все гуманитарии знают, что текст далеко не всегда настолько хорош, как подразумевается этим принципом. И все же в анализе ученый должен исходить из того, что текст таки действительно совершенен и что все мелочи в нем на самом деле несут смысловую нагрузку. Принцип простоты как раз и отражает взгляд на логическое совершенство природы. Еще Ф. Бэкон на заре естественной науки сформулировал исходную установку: тонкость природы во много раз тоньше наших рассуждений о ней. Это значит, что, сколь бы блестящими ни были наши умозрительные построения, они не могут соревноваться с соразмерностью и логической стройностью, присущей природе. Поэтому мы можем быть уверены, что природа не создает монстров только ради того, чтобы эти монстры существовали. Ранее при обсуждении теорий заучивания именно это и утверждалось: нельзя предполагать существование процессов, предназначенных только для того, чтобы мешать нормальной работе психики и сознания. Ученый-естественник всегда знает, что его теоретические изыскания не способны в полной мере отразить логическую красоту и внутреннюю гармонию мира. Ну а если сделанное ученым описание заведомо не выглядит совершенным, то оно изначально и не может претендовать на соответствие внутренней красоте природы. Так в естественных науках появляется плохо формализуемый, но зато часто поминаемый А. Эйнштейном критерий эстетического совершенства теории.

В частных проявлениях принцип простоты имеет и прямое логическое обоснование. Дело в том, что любую теорию можно совместить с любым, даже опровергающим эту теорию, опытом, если результат опыта ввести в саму теорию в качестве дополнительного допущения. Поясню на примере. В качестве теории рассмотрим заведомо нелепое утверждение: булки растут на деревьях. И пусть автору этой замечательной теории продемонстрируют, как выпекают булки в хлебопекарнях. Теория опровергнута? Нет, конечно: просто теперь автор скорректирует свою теорию и будет доказывать, что, во-первых, булки растут на деревьях и, во-вторых, выпекаются в пекарнях. Чтобы ограничить возможности подобной подгонки данных, следует наложить ограничения на введение в теорию таких дополнительных допущений, которые «превышают необходимые», которые специально предназначены лишь для объяснения опровергающих данных.

Принцип простоты выступает как методологический регулятив даже в способе рассуждения исследователя. Еще И. Ньютон призывал: поскольку возможно (т. е. до тех пор, пока не доказано обратное), должно приписывать одинаковые причины различным явлениям. Отсюда следует: разные явления могут быть признаны теоретически разными, только если они или подчиняются разным законам, или по-разному входят в один и тот же закон (например, с разными коэффициентами). Такая позиция резко противостоит расхожей точке зрения психологов, ориентирующихся на канон эмпирических исследований. Природа психического настолько сложна, уверяют они нас, что ее надо дробить на как можно более мелкие части и искать собственные причины для каждой части отдельно. Поэтому необходима «все возрастающая дифференциация научного изучения человека, углубленная специализация отдельных дисциплин и их дробление на ряд все более частных учений» – так, например, учил Б. Г. Ананьев. Принцип простоты, наоборот, требует отойти от восходящей к Аристотелю традиции классифицировать психическое еще до понимания общих законов психической деятельности.

Принцип простоты применим и к организации экспериментальных исследований. Тогда он может быть сформулирован как принцип методической простоты. Ранее – при обсуждении требований к эмпирическим наукам – он уже был описан.

Принцип независимой проверяемости.Вероятность точно угадать правила игры, по которым играет природа, ничтожна мала. Да и опытные данные зависят от огромного количества неучтенных факторов. Неудивительно, что несовпадение предсказаний теории (т. е. конкретной догадки о правилах игры) и реального опыта не приводит сразу к опровержению теории. Вначале начинается сложный процесс защиты теории. В противном случае самые известные естественнонаучные теории должны были бы погибнуть задолго до получения мировой известности. Н. Коперник – основатель гелиоцентрической системы – считал, что планеты вращаются вокруг Солнца по круговым орбитам, что противоречило наблюдаемым данным. Позднее И. Кеплер догадался, что на самом деле орбиты эллипсообразны. Идея Кеплера явно противоречила замыслу Коперника. Но она удачно описывала астрономические наблюдения, и именно с нее началось триумфальное шествие гелиоцентрической системы. Кеплер подправил теорию Коперника и тем самым спас ее от опровержения. Д. И. Менделеев, как уже говорилось, подправил известные на тот момент опытные данные – и спас Периодическую систему элементов. Как узнать, однако, что сделана несущественная подгонка данных и непринципиальная корректировка теоретических построений, что они спасают хорошую естественнонаучную теорию, действительно заслуживающую такого спасения? Ведь автору любой теории собственная идея с самого начала кажется лучшей из возможных, он искренне верит в ее правильность.

Ответ дает следующий принцип: любые новые теории, любые исправления старой теории, как и любая подгонка данных должны независимо проверяться. Любая гипотеза, всякое новое допущение должны подтверждаться иными данными, отличными от тех, на основании которых они были предложены. Предлагаемая гипотеза тем самым всегда должна обладать новым эмпирическим содержанием. Поэтому и нельзя подтвердить гипотезу об ограниченности объема кратковременной памяти, демонстрируя в эксперименте, что человек с первого предъявления запоминает ограниченный объем информации, ибо сама гипотеза была выдвинута как раз на основе подобных экспериментов. Допустим, исследователь открыл (угадал) некоторую закономерность в процессе решения человеком мнемических задач, но тем не менее в эксперименте обнаружил, что хотя, эта закономерность обнаруживается при запоминании чисел, бессмысленных слогов и т. д., она не проявляется при запоминании слов. В этом случае некорректно просто заявить, что данная закономерность справедлива для всех видов запоминаемого материала, кроме осмысленного. Он должен дать логичное объяснение, почему эта закономерность не проявляется при запоминании осмысленного материала, и проверить это объяснения в специальном эксперименте. Или хотя бы сослаться на другие экспериментальные результаты, полученные ранее другими авторами с помощью принципиально иных методических приемов, подтверждающих тем не менее данное объяснение.

 



Просмотров 693

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!