Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОСНОВНЫЕ ПОНЯТИЯ



Дифференциальное уравнение (ДУ) – уравнение, связывающее независимую переменную х, функцию у = у(х) и ее производные и дифференциалы.

F(x,y,y’,y’’…) = 0

ДУ содержи только производные и дифференциалы, а функцию у и переменную х – не обязательно.

Если ДУ имеет одну независимую переменную, то оно обыкновенное ДУ

Если ДУ имеет больше двух независимых переменных, то это ДУ частных производных

Порядок ДУ – наивысший порядок производных, входящих в него.

Общее решение – такая дифференцируемая функция у = у(х, С), которая при подстановке в уравнение обращает его в тождество.

y'=y, y = cex

Иногда Ф(х,у,С)=0, которое не разрешается относительно У. Тогда это общий интеграл, а не решение.

Решение у=у(х, СО) получается из общего решения при определенном значении С – частное решение.

Задача Коши – нахождение частного решения ДУ вида у = у(х,Со), удовлетворяющего начальным условиям у(хо) = уо.

Интегральная кривая – график у = у(х) решения дифференциального уравнения, т.е график функции, удовлетворяющей этому уравнению.

 

 

17. Дифференциальные уравнения 1-го порядка с разделяющимися переменными.

Дифференциальным уравнением первого порядка называется соотношение, связывающее независимую переменную, функцию и ее первую производную. Общий вид: F(x, y, y`) = 0

Уравнение разрешимое относительно y`, называется дифференциальным уравнением первого порядка, разрешенное относительно производной. y` = f(x, y).

Дифференциальное уравнение первого порядка с разделяющимися переменными.

Диф. уравн. 1-го порядка - уравнением с разделяющимися переменными, если оно пожжет быть представлено в виде , где

Для решения дифференциального уравнения искомую функцию y представим в виде произведения двух множителей y = uv, где u – некоторое ненулевое решение соответствующего однородного уравнения. u` + p(x) = 0, а v-новая неизвестная функция. Так как y` = vu` + uv`, то подставляя … получим v[u`+p(x)u] + uv` = q(x) →uv`=q(x)

 

 

18. Однородные функции и однородное дифференциальное уравнение 1-го порядка.

Опр. Многочлен P(x,y) = ∑aijxiyj называется однородным степени n, если все его члены имеют один и тот же порядок n, т.е. для каждого члена имеем I + j = n

Если аргументы x,y однородного многочлена степени n заменить на пропорциональные величины λx и λy, то в результате этот многочлен увеличится на n-степень коэффициента пропорциональности λ.

Опр. Функция P(x,y) называется однородной степени n относительно своих аргументов х и у, если для любого числа λ (кроме 0) имеет место: Р(λх, λу) = λ”P(x,y)

Р. Однородным дифф. уравнением называется уравнение вида М(х,у)dx + N(x,y)dy = 0, где M(x,y) и N(x,у) – однородные функции одной и той же степени.

Опр. Дифф. уравнение, которое можно преобразовать к виду y’ = ϕ( ) называется однородным.

С помощью подстановки u = или u=yx, где u(x) – новая неизвестная функция, данное уравнение приводится к уравнению с разделяющимися переменными.

Действительно, y = ux, тогда y’ = u’x ≠ ux’

Подставим в y’ = ϕ( ), получим: u’x + ux’ = ϕu, u’x + u = ϕ(x), и таким образом получим уравнение с разд.переменными относительно u:

= ; = + C

Или: = ln |x| + C = ln |x| + ln |C| = ln |xC|

После этого осуществляется подстановка u = и в результате получаем общее решение однородного дифф.уравнения.

 



Просмотров 1057

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!