Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Источники бесперебойного питания 4 часть



Парковкой головок называют процесс их перемещения в безопасное положение. Это - парковочное положение головок в той области дисков, где ложатся головки. Там, обычно, не записано никакой информации, кроме серво - это специальная посадочная зона. Для фиксации привода головок в этом положении в большинстве ЖМД используется маленький постоянный магнит, когда головки принимают парковочное положение - этот магнит соприкасается с основанием корпуса и удерживает позиционер головок от ненужных колебаний. При запуске накопителя схема управления линейным двигателем отрывает фиксатор, подавая на двигатель, позиционирующий головки, усиленный импульс тока. В ряде накопителей используются и другие способы фиксации - основанные, например, на воздушном потоке, создаваемом вращением дисков. В настоящее время на всех современных устройствах парковка головок накопителей производится автоматически внутренними схемами контроллера при отключении питания и не требует для этого никаких дополнительных программных операций [5, 8].

Основные физические и логические параметры ЖМД. Наиболее распространены накопители с диаметром дисков 2.2, 2.3, 3.14 и 5.25 дюймов. Диаметр дисков определяет плотность записи на дюйм магнитного покрытия. Накопители большего диаметра содержат большее число дорожек, и в них, как правило, используются более простые технологии изготовления носителей, предназначенных для меньшей плотности записи. Они, как правило, медленнее своих меньших собратьев и имеют меньшее число дисков, но более надежны. Накопители с меньшим диаметром больших объемов имеют более высокотехнологичные поверхности и высокие плотности записи информации, а также, как правило, и большее число дисков.

Число поверхностей - определяет количество физических дисков нанизанных на шпиндель (наиболее распространены устройства с числом поверхностей от 2 до 5). Число поверхностей прямо определяет физический объем накопителя и скорость обработки операций на одном цилиндре. Так как операции на поверхностях цилиндра выполняются всеми головками синхронно, то теоретически, при равных всех остальных условиях, более быстрыми окажутся накопители с большим числом поверхностей.

Число цилиндров - определяет сколько дорожек (треков) будет располагаться на одной поверхности. В настоящее время все накопители емкостью более 1 Гигабайта имеют число цилиндров более 1024.

Число секторов - общее число секторов на всех дорожках всех поверхностей накопителя. Определяет физический неформатированный объем устройства.

Число секторов на дорожке - общее число секторов на одной дорожке (для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства).

Частота вращения шпинделя - определяет, сколько времени будет затрачено на последовательное считывание одной дорожки или цилиндра. Частота вращения измеряется в оборотах в минуту (rpm). Для дисков емкостью до 1 гигабайта она обычно равна 5,400 оборотов в минуту, а у более вместительных достигает 7,200 , 10000 и более.

Время перехода от одной дорожки к другой - обычно составляет от 3,5 до 5 миллисекунд, а у быстрых моделей может быть от 0,6 до 1 миллисекунды. Этот показатель является одним из определяющих быстродействие накопителя, т.к. именно переход с дорожки на дорожку является самым длительным процессом в серии процессов произвольного чтения/записи на дисковом устройстве.

Время успокоения головок - время, проходящее с момента окончания позиционирования головок на требуемую дорожку до момента начала операции чтения/записи. Является внутренним техническим показателем, входящим в показатель - время перехода с дорожки на дорожку.

Время установки или время поиска - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Среднее время установки или поиска - усредненный результат большого числа операций позиционирования на разные цилиндры, часто называют средним временем позиционирования.

Время ожидания - время, необходимое для прохода нужного сектора к головке, усредненный показатель – среднее время ожидания, получаемое как среднее от многочисленных тестовых проходов. После успокоения головок на требуемом цилиндре контроллер ищет нужный сектор. При этом, последовательно считываются адресные идентификаторы каждого проходящего под головкой сектора на дорожке. Это время у накопителей объемом от 540 мегабайт до 1 гигабайта составляет примерно 5,6, а у дисков свыше гигабайта – 4,2 миллисекунды и менее.

Время доступа - суммарное время, затрачиваемое на установку головок и ожидание сектора. Наиболее долгим является промежуток времени установки головок.

Среднее время доступа к данным - время, проходящее с момента получения запроса на операцию чтения/записи от контроллера до физического осуществления операции - результат сложения среднего время поиска и среднего времени ожидания. Среднее время доступа зависит от того, как организовано хранение данных и насколько быстро позиционируются головки чтения записи на требуемую дорожку. Среднее время доступа – усредненный показатель от тестовых проходов, и обычно, оно составляет от 10 до 18 миллисекунд и используется как базовый показатель при сравнительной оценке скорости накопителей различных производителей.

Скорость передачи данных (пропускная способность) - определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Измеряется в мегабайтах в секунду (MBps) или мегабитах в секунду (Mbps) и является характеристикой контроллера и интерфейса. Различают две разновидности скорости передачи - внешняя и внутренняя.

Внешняя скорость передачи данных - с какой скоростью данные считываются из буфера, расположенного на накопителе в оперативную память компьютера.

Внутренняя скорость передачи данных - скорость передачи данных между головками и контроллером накопителя и определяет общую скорость передачи данных в тех случаях, когда буфер не используется или не влияет (например, когда загружается большой графический или видеофайл). Внутренняя скорость передачи данных очень сильно зависит от частоты вращения шпинделя.

Размер кеш-буфера контроллера. Встроенный в накопитель буфер выполняет функцию упреждающего кэширования и призван сгладить большую разницу в быстродействии между дисковой и оперативной памятью компьютера. Выпускаются накопители с 128, 256 и 512 килобайтным буфером.

Средняя потребляемая мощность. При сборке настольных компьютеров учитывается мощность, потребляемая всеми его устройствами. Современные накопители на ЖМД потребляют от 5 до 15 Ватт.

Среднее время наработки на отказ - определяет сколько времени способен проработать накопитель без сбоев. Они приводят обычно среднюю условную наработку на отказ в сотнях тысяч часов работы, что является расчетной статистической величиной.

Сопротивляемость ударам - определяет степень сопротивляемости накопителя ударам и резким изменениям давления, измеряется в единицах допустимой перегрузки g во включенном и выключенном состоянии.

Физический и логический объем накопителей. Носители жестких дисков, в отличие от гибких, имеют постоянное число дорожек и секторов, изменить которое невозможно. Эти числа определяются типом модели и производителем устройства. Поэтому, физический объем жестких дисков определен изначально и состоит из объема, занятого служебной информацией (разметка диска на дорожки и сектора) и объема, доступного пользовательским данным. Физический объем жесткого диска, также, зависит от типа интерфейса, метода кодирования данных, используемого физического формата и др.

Для оптимального использования поверхности дисков применяется так называемая зонная запись (Zoned Bit Recording - ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и потенциальную информационную емкость на единицу площади), информация записывается с большей плотностью, чем на внутренних.

Физическое хранение, методы кодирования информации. Вся информация и места ее хранения делятся на служебную и пользовательскую информацию. Служебная и пользовательская информация хранится в областях дорожек называемых секторами. Каждый сектор содержит область пользовательских данных - место, куда можно записать информацию, доступную в последующем для чтения и зону серво-данных, записываемых один раз при физическом форматировании и однозначно идентифицирующих сектор и его параметры (используется или нет, физический адрес сектора, ЕСС код и т.п.). Вся серво-информация не доступна обычным процедурам чтения/записи и носит абсолютно уникальный характер в зависимости от модели и производителя накопителя.

В отличие от дискет и старых накопителей на ЖД, диски современных накопителей проходят первичную, или низкоуровневую, разметку (Low Level Formatting) на специальном заводском высокоточном технологическом стенде. В ходе этого процесса на диски записываются служебные метки - серво-информация, а также формируются привычные дорожки и сектора.

В настоящее время используется несколько различных методов кодирования данных.

Частотная модуляция (Frequency Modulation - FM) - метод, используемый в накопителях на сменных магнитных дисках (кодирование методом FM назвают кодирование с единичной плотностью). Метод предполагает запись на носитель в начале каждого битового элемента данных бита синхронизации. Битовый элемент определяется как минимальный интервал времени между битами данных, получаемый при постоянной скорости вращения диска носителя. Метод гарантирует, по меньшей мере, одну перемену направления магнитного потока за единицу времени вращения. Такой временной интервал соответствует максимальной продольной плотности магнитного потока 2330 перемен на 1 см и скорости передачи данных – 125 Кбит/с. Простота кодирования и декодирования по методу FM определяется постоянной частотой следования синхроимпульсов. Однако, наличие этих бит синхронизации и является одним из недостатков данного метода, т.к. результирующий код малоэффективен с точки зрения компактности данных (половина пространства носителя занимается битами синхронизации). В настоящее время не используется.

Модифицированная частотная модуляция (Modified Frequency Modulation - MFM) - улучшенный метод FM. Модификация заключается в сокращении вдвое длительности битового элемента - до 4 мкс и использовании бит синхронизации не после каждого бита данных, а лишь в случаях, когда в предшествующем и текущем битовых элементах нет ни одного бита данных. Такой способ кодирования позволяет удвоить емкость носителя и скорость передачи данных, по сравнению с методом FM, т.к. в одном и том же битовом элементе никогда не размещаются бит синхронизации и данных, а на один битовый элемент приходится только одна перемена направления магнитного потока.

Запись с групповым кодированием (Run Limited Length - RLL) - метод, полностью исключающий запись на диск каких-либо синхронизационных бит. Синхронизация достигается за счет использования бит данных. Метод RLL происходит от методов, используемых для кодирования данных при цифровой записи на магнитную ленту. При этом, каждый байт данных разделяется на два полубайта, которые кодируются специальным 5-ти разрядным кодом, суть которого – добиться хотя бы одной перемены направления магнитного потока для каждой пары его разрядов. Что означает, необходимость наличия в любой комбинации 5-ти разрядных кодов не более двух стоящих рядом нулевых бит. Из 32 комбинаций 5 бит такому условию отвечают 16. Они и используются для кодирования по методу RLL. При считывании происходит обратный процесс. При применении метода кодирования RLL скорость передачи данных возрастает с 250 до 380 Кбит/с, а число перемен полярности магнитного потока до 3330 перемен/см. При этом длительность битового элемента снижается до 2.6 мкс. Поскольку, максимальный интервал времени до перемены магнитного потока известен (два последовательно расположенных нулевых бита), биты данных могут служить битами синхронизации, что делает метод кодирования RLL самосинхронизирующимся и самотактируемым.

Модифицированная запись с групповым кодированием (Advanced Run Limited Length – ARLL) – улучшенный метод RLL, в котором, наряду с логическим уплотнением данных, производится повышение частоты обмена между контроллером и накопителем.

Логическое хранение и кодирование информации. Первый сектор жесткого диска содержит хозяйственную загрузочную запись - Master Boot Record (MBR) которая, в свою очередь, содержит загрузочную запись - Boot Record (BR), выполняющуюся в процессе загрузки ОС. За загрузчиком расположена таблица разделов - Partition Table (PT), содержащая 4 записи - элементы логических разделов - Partitions.

Интерфейсы жестких дисков. Контроллер накопителя физически расположен на плате электроники и предназначен для обеспечения операций преобразования и пересылке информации от головок чтения/записи к интерфейсу накопителя.

Так как длина дорожек неравна, данные на различные дорожки необходимо записывать неравномерно. Данные, записываемые в сектора, защищаются от некоторых ошибок чтения/записи при помощи расчета и записи вместе с ними контрольной суммы - кода контроля ошибок (Error Correction Code - ECC). Записывая байты на диск, адаптер производит накопление циклическим делением входных данных на специальный полином, остатка от деления, который представляет уникальную комбинацию бит и записывается контроллером вместе с данными. Число байт ECC для каждого устройства определяется видом используемого полинома. При считывании данных производится аналогичное накопление и расчет контрольной суммы. В случае несовпадения результатов рассчитываемого и хранимого с данными ECC, производится попытка восстановления - коррекции данных при помощи полинома, имеющихся данных и контрольной суммы.

В 80-х годах фирма IBM выпустила компьютер спецификации AT (Advanced Technology — передовая технология). Интерфейс появился в результате переноса контроллера жесткого диска поближе к самому накопителю, то есть создания устройств со встроенным контроллером - IDE (Integrated Device Electronic).

Поскольку стандартный контроллер жестких дисков AT позволял подключать до двух накопителей, эту возможность включили и в новый интерфейс.

Винчестер был подсоединен к 16-битной шине ISA и управлялся собственным контроллером.

Согласованный стандарт на такой интерфейс получил название ATA (AT Attachment — подключение к AT).

Система адресации данных в ATA тоже имеет "дисковые корни": для этих накопителей изначально указывали адрес цилиндра (Cyl), головки (Head) и сектора (Sector) - это так называемая трехмерная адресация CHS. Позже по ряду причин стали различать физическую (реальную для накопителя) и логическую (по которой с устройством общается программа) адресацию CHS.

В спецификации ATA фигурируют следующие компоненты:

- хост - адаптер - средства сопряжения интерфейса ATA с системной шиной (в простейшем случае - набор буферных схем между шинами ISA и ATA) - хостом будем называть компьютер с хост-адаптером интерфейса ATA;

- кабель-шлейф с двумя или тремя 40-контактными IDC-разъемами (рисунок 8.9). В стандартном кабеле одноименные контакты всех разъемов соединяются вместе;

- ведущее устройство (Master) - периферийное устройство, в спецификации ATA официально называемое Device-0 (устройство-0);

- ведомое устройство (Slave) - периферийное устройство, в спецификации официально называемое Device-1 (устройство-1).

Если к шине ATA подключено одно устройство, оно должно быть ведущим. Если подключены два устройства, одно должно быть ведущим, другое - ведомым.

Для подключения устройств IDE существует несколько разновидностей интерфейса.

1. ATA (AT Attachment), он же AT-BUS - 16-битный интерфейс подключения к шине компьютера AT. В настоящее время это наиболее распространенный 40-проводной сигнальный и 4-проводной питающий интерфейс для подключения дисковых накопителей к компьютерам класса AT. Для миниатюрных (2,5" и меньших) накопителей используют 44-проводной кабель, по которому передается и питание.

2. PC Card ATA - 16-битный интерфейс с 68-контактным разъемом PC Card (PCMCIA) для подключения к блокнотным ПК.

3. XT IDE (8-бит), он же XT-BUS - 40-проводной интерфейс, похожий на ATA, но несовместимый с ним.

4. MCA IDE (16-бит) - 72-проводный интерфейс, предназначенный специально для шины и накопителей PS/2. Как и компьютеры PS/2, по крайней мере в нашей стране устройства с этим интерфейсом встречаются редко.

5. ATA-2 - расширенная спецификация ATA, включает 2 канала, 4 устройства, PIO Mode 3, multiword DMA mode 1, Block mode, объем диска до 8 Гбайт, поддержка LBA и CHS. Интерфейс ATА-2 устанавливал более скоростные протоколы, определил новый режим обмена данными Block transfer (передача блоками) и адресацию дискового пространства LBA (Logical Block Addressing — адресация логическими блоками). Были расширены команды идентификации диска, выдающие информацию по системным запросам о характеристиках устройства. Интерфейс IDE/ATА даже в последних реализациях остается 16-битным. Шина же PCI, к которой подключены IDE-контроллеры чипсета материнской платы, является 32-разрядной. Поэтому контроллер составляет из двух переданных подряд 16-битных пакетов один 32-битный и пересылает его дальше по шине. Даже в самом скоростном режиме 16-битный пакет, отправляемый с жесткого диска, тормозит работу системы.

6. Fast ATА. Отличается от АТА-2 отсутствием быстрых режимов обмена (РIO4 и MW2 DMA).

7. Fast ATA-2 разрешает использовать Multiword DMA Mode 2 (13,3 Mбайт/с), PIO Mode 4. Fast АТА-2 для своего интерфейса, ничем не отличающегося от стандарта АТА-2. EIDE (Enhanced IDE — улучшенный IDE). EIDE целиком включает все спецификации АТА-2 и протокола ATAPI. Отличия в том, что создан хост-адаптер Dual IDE/ATА, позволяющий использовать до четырех устройств.

8. ATA-3 - расширение ATA-2. Включает средства парольной защиты, улучшенного управления питанием, самотестирования с предупреждением приближения отказа - SMART (Self Monitoring Analysis and Report Technology). По режимам обмена данными АТА-3 полностью соответствует АТА-2. Существенным шагом вперед в развитии интерфейса стало появление протокола ATAPI (ATA Packet Interface — пакетный интерфейс АТА). Он обеспечивал подключение к каналу IDE компонентов, отличных от жестких дисков. Протокол АТАРI требует соответствующей поддержки со стороны BIOS, причем последние версии BIOS могут назначить любое устройство, присоединенное по протоколу ATAPI, загрузочным. Протокол вошел в новый стандарт ATA/ATAPI-4.

9. ATA/ATAPI-ATAPI-4 - расширение ATA-3, включающее режим Ultra DMA со скоростью обмена до 33 Мбайт/с и пакетный интерфейс ATAPI. Жесткие диски ATA/ATAPI-4 выпускались под обозначением Ultra АТА-33.

10. Стандарт ATA/ATAPI-5. Протокол Ultra АТА-66 нового стандарта оговаривал режим передачи данных со скоростью до 66 Мбайт/с (спецификация Ultra DMA mode 4). Для подключения дисков используют шлейфы (с чередованием сигнальных проводников и линий, замкнутых на «землю»), имеющие 80 проводников, совместимые с существующими 40-контактными разъемами IDE.

11. Спецификация АТА/ATAPI-6, определяет требования к жестким дискам и интерфейсу с пиковой пропускной способностью до 100 Мбайт/с (режим Ultra DMA mode 5). В частности, предусмотрено увеличение LBA с 32 до 64 бит. Поддержка особых режимов передачи потокового видео, меры по уменьшению шумности дисков. Жесткие диски с интерфейсом АТА/ATAPI-6 обозначаются как ATА-100. Возможности дальнейшего совершенствования параллельного интерфейса IDE, несмотря на появление жестких дисков UltraATA-133 (пропускная способность 133 Мбайт/с в режиме UltraDMA Mode 5, объем накопителя в параллельном АТА ограничен 137 Гбайтами) практически исчерпаны.

12. E-IDE (Enhanced IDE) - расширенный интерфейс, введенный фирмой Western Digital. Реализуется в адаптерах для шин PCI и VLB, позволяющий подключать до 4 устройств (к двум каналам), включая CD-ROM и стриммеры (ATAPI). Поддерживает PIO Mode 3, multiword DMA mode 1, объем диска до 8 Гбайт, LBA и CHS. С аппаратной точки зрения практически полностью соответствует спецификации ATA-2. Преимущество E-IDE по отношению к IDE:

- большая емкость дисков (если IDE не поддерживал диски свыше 528 мегабайт, то EIDE поддерживает объемы до 8.4 гигабайта на каждый канал контроллера);

- к нему подключается больше устройств - четыре вместо двух;

- с пецификация ATAPI (AT Attachment Packet Interface) дает возможность подключения к этому интерфейсу не только жестких дисков, но и других устройств - стриммеров и дисководов CD-ROM);

- производительность (накопители с интерфейсом IDE характеризовались максимальной скоростью передачи данных на уровне 3 мегабайт в секунду);

- поддерживается режим прямого доступа к памяти - Multiword Mode 1 DMA (Direct Memory Access) или Multiword Mode 2 DMA и Ultra DMA, которые поддерживают обмен данными в монопольном режиме (то есть когда канал ввода-вывода в течение некоторого времени обслуживает только одно устройство) (скорость достигает 13.3 и 16.6 мегабайта в секунду, а при использовании Ultra DMA и соответствующего драйвера шины - 33 мегабайт в секунду, EIDE-контроллеры используют механизм PIO точно так же, как это делают и некоторые SCSI-адаптеры, но скоростные адаптеры SCSI работают только по методу DMA);

- расширена система команд управления устройством, передачи данных и диагностики, увеличен кеш-буфер обмена данными и существенно доработана механика.

Устройства ATA IDE, E-IDE, ATA-2, Fast ATA-2, ATA-3 и ATA/ATAPI-4 электрически совместимы, степень логической совместимости достаточно высока (все базовые возможности ATA доступны).

Сегодня под аббревиатурой IDE подразумевают все устройства, совместимые с интерфейсом ATА: Fast ATA, EIDE, Ultra ATА и прочие. Спецификация ATА определила, что к одному каналу можно подключать два устройства (Master и Slave). Установила режимы обмена данными РIO (О, 1, 2, 4, 5) и DMA (SWО, 1. 2 и MWO).

Режим PIO (Programmed Input-Output — программный ввод-вывод) предусматривает участие центрального процессора в обмене данными между диском и оперативной памятью. В режиме DMA (Direct Memory Access — прямой доступ к памяти) устройство напрямую общается с системной памятью, перехватывая управление шиной. Протоколы SW (Single Word — однословный) и MW (Multi Word — многословный) определяют, в каком виде передаются данные. Номера режимов указывают на продолжительность цикла обмена и, тем самым, на скорость передачи данных (например, 1 — 240 нc, 2 — 180 нc). В сокращенном виде обычно это записывают так: SW2 DMA. MW1 DMA, PIO2 и т. д. Особенности 16-битной адресации шины ISA не позволяли поддерживать жесткие диски объемом свыше 528 Мбайт.

Протоколы обмена данными пополнились новыми стандартами: режимом Ultra DMA mode 2 и режимом коррекции ошибок по контрольной сумме (CRC — Cyclic Redundancy Check). Кроме того, появились многозадачные режимы, то есть режимы параллельного выполнения команд и создания очередей двумя устройствами на одном канале IDE (правда, с существенными ограничениями).

Для устойчивой работы в режиме Ultra DMA рекомендуется применение 80-проводных кабелей, обеспечивающих чередование сигнальных цепей и проводов схемной земли (GND). На 80-проводном кабеле в разъеме для подключения контроллера контакт 34 соединен с шиной GND и не соединен с проводом шлейфа; этим обеспечивается идентификация типа кабеля. Спецификация АТА узаконивает так же 4-контактный разъем питания (рисунок 1.27).

Спецификация на Serial ATA. Отличие нового интерфейса состоит в последовательном способе обмена данными. Данные передаются по восьмижильному кабелю, уровень сигналов составляет 3,3 В. Реализация интерфейса позволяет достичь пиковой пропускной способности 1,5 Гбит/с (примерно 187 Мбайт/с) [5, 8].

 

а) б)

а - интерфейсный;

б - питания.

Рисунок 1.27 - Разъемы интерфейса АТА (вилки на устройствах)

 

Интерфейс Serial ATA является радиальным (хост-центрическим), в нем определяется только взаимодействие хоста с каждым из подключенных устройств.

Последовательный интерфейс ATA, как и параллельный АТА, пред­назначен для подключений устройств внутри компьютера. Длина кабелей не превы­шает 1 м, при этом все соединения радиальные, каждое устройство подключается к хост-адаптеру своим кабелем. В стандарте предусмотрена возможность «горячей» замены.

Интерфейс Serial ATA предоставит ряд преимуществ:

- дешевые жесткие диски, превосходящие по производительности многие устройства с интерфейсом SCSI;

- предусмотрено автоматическое конфигурирование компонентов (к одному кабелю можно подсоединить несколько устройств), подключаемых к Serial ATA (жестких дисков, CD-ROM/ RW и DVD/CD приводов), накопителей со съемными носителями (Zip, Jazz, LS-120, магнитооптика) и других внутренних устройств;

- из системного блока исчезают шлейфы, сильно затрудняющие доступ к компонентам и мешающие циркуляции охлаждающего воздуха;

- потребуется замены операционной системы, так как драйверы устройств Serial ATA подключаются к семейству Windows.

Интерфейс SCSI является универсальным и определяет шину данных между центральным процессором и несколькими внешними устройствами, имеющими свой контроллер.

Сегодня применяются в основном два стандарта - SCSI-2 и Ultra SCSI. В режиме Fast SCSI-2 скорость передачи данных доходит до 10 мегабайт в секунду при использовании 8-разрядной шины и до 20 мегабайт при 16-разрядной шине Fast Wide SCSI-2. Стандарт Ultra SCSI отличается большей производительностью - 20 мегабайт в секунду для 8-разрядной шины и 40 мегабайт для 16-разрядной. В новейшем SCSI-3 увеличен набор команд, но быстродействие осталось на том же уровне. Все применяющиеся сегодня стандарты совместимы с предыдущими версиями сверху - вниз, то есть к адаптерам SCSI-2 и Ultra SCSI можно подключить старые SCSI-устройства. Интерфейс SCSI-Wide, SCSI-2, SCSI-3 - стандарты модификации интерфейса SCSI, разработаны комитетом ANSI. Общая концепция усовершенствований направлена на увеличение ширины шины до 32-х, с увеличением длинны соединительного кабеля и максимальной скорости передачи данных с сохранением совместимости с SCSI.

Работа накопителя. Процесс работы накопителя от запуска до остановки. При подаче питающих напряжений начинает работать микропроцессор контроллера. Вначале он, как и компьютер, выполняет самотестирование и в случае его успеха запускает схему управления двигателем вращения шпинделя. Диски начинают раскручиваться, увлекая за собой прилегающие к поверхностям слои воздуха, и при достижении некоторой скорости давление набегающего на головки потока воздуха преодолевает силу пружин, прижимающих их к дискам, и головки всплывают, поднимаясь над дисками на доли микрона. С этого момента, вплоть до остановки дисков, головки не касаются дисков и парят над поверхностями, поэтому ни диски, ни сами головки практически не изнашиваются. Тем временем, двигатель шпинделя продолжает раскручивать поверхности. Его скорость постепенно приближается к номинальной (тысячи оборотов в минуту). В это время накопитель потребляет максимум питающего напряжения и создает предельную нагрузку на блок питания компьютера по напряжению 12 Вольт. Поскольку в любой зоне дисков присутствует серворазметка, то сервоимпульсы начинают поступать с головок сразу же после начала вращения, и по их частоте контроллер судит о скорости вращения дисков. Система стабилизации вращения следит за потоком сервоимпульсов, и при достижении номинальной скорости происходит так называемый захват, при котором любое отклонение скорости вращения сразу же корректируется изменением тока в обмотках двигателя. После достижения шпинделем номинальной скорости вращения освобождается фиксатор позиционера головок чтения/записи, и система его управления проверяет способность поворачиваться и удерживаться на выбранной дорожке путем выборочного произвольного позиционирования. При этом делается серия быстрых поворотов в разные стороны, что на слух выглядит как характерное тарахтение, слышимое через несколько секунд после старта. Во время перемещения позиционера головок происходит слежение за поступающими с головок серво-импульсами, и система управления всегда знает, над сколькими дорожками прошли головки. Аналогично происходит и удержание головок над выбранной дорожкой - при отклонении от центра дорожки изменяется во времени величина и форма серво-импульсов. Система управления может ликвидировать отклонение, изменяя ток в обмотках двигателя позиционера головок. Во время тестирования привода головок заодно делается и его калибровка - подбор параметров управляющих сигналов для наиболее быстрого и точного перемещения позиционера при минимальном количестве промахов. Здесь нужно сказать, что микрокомпьютер ЖД, как и компьютер, имеет ПЗУ, в котором записана BIOS накопителя - набор программ для начального запуска и управления во время работы, и ОЗУ, в которое после раскрутки механической системы загружаются остальные части управляющих программ. Кроме всего прочего, в ОЗУ загружается так называемая карта переназначения дефектных секторов, в которой отмечены дефектные секторы, выявленные при заводской разметке дисков. Эти секторы исключаются из работы и иногда подменяются резервными, которые имеются на каждой дорожке и в специальных резервных зонах каждого диска. Таким образом, даже если диски и имеют дефекты (а при современной плотности записи и массовом производстве поверхностей носителей они имеют их всегда), для пользователя создается впечатление чистого диска, свободного от сбойных секторов. Более того - на каждом диске накопителя имеется некоторый запас резервных секторов, которыми можно подменить и появляющиеся впоследствии дефекты. Для одних накопителей это возможно сделать под управлением специальных программ, для других - автоматически в процессе работы.



Просмотров 682

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!