Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей)



 

; ,

где и φi - соответственно напряженность и потенциал в данной точке поля, создаваемого i–м разрядом.

 

Напряженность поля, создаваемого равномерно заряженной линией

,

где - линейная плотность заряда, т.е. величина заряда, приходящего на единицу длины нити l (τ = Q/l); r – расстояние от нити до точки, в которой вычисляется напряженность поля.

 

Напряженность поля равномерно заряженной плоскости и плоского конденсатора соответственно

; ,

где - поверхностная плотность заряда, т.е. величина заряда, приходящегося на единицу площади поверхности S ( =Q/S).

 

Связь потенциала с напряженностью

 

а) для однородного поля (например, поля, создаваемого равномерно заряженной плоскостью):

;

где φ1 – φ2 - разность потенциалов в двух точках, стоящих друг от друга на расстоянии l вдоль силовой линии;

 

б) для поля, обладающего центральной симметрией (например, поле заряженной прямой линией):

;

где r – расстояние вдоль силовой линии.

 

 

3.8. Работа кулоновских сил по перемещению заряда (Q) из точки поля потенциалаφ1в точку поля с потенциаломφ2

A=Q(φ1 – φ2).

 

 

Электроемкость

а) уединенного проводника:

,

где Q – заряд проводника, φ - потенциал проводника (при условии, что в бесконечности потенциал проводника принимается равным нулю);

б) конденсатора (совокупность двух проводников):

;

где U - разность потенциалов проводников, составляющих конденсатор.

 

Электроемкость плоского конденсатора

;

где S – площадь пластины (одной) конденсатора; d – расстояние между пластинами.

 

Электроемкость батареи конденсаторов

(при последовательном соединении);

(при параллельном соединении),

где N – число конденсаторов в батарее.

 

 

Энергия заряженного конденсатора

.

 

 

Сила постоянного тока

,

где dQ – заряд, прошедший через сечение проводника за время dt.

 

 

Плотность тока

,

где S – площадь поперечного сечения проводника.

 

 

3.15. Связь плотности тока со средней скоростью < и > направленного движения заряженных частиц

,

где n – концентрация заряженных частиц.

 

 

Закон Ома в дифференциальной форме

 

j = γE = E/ρ,

 

где γ- удельная проводимость, Е – напряженность электрического поля, ρ – удельное сопротивление.

 

Связь удельной проводимости с подвижностью ионов (заряженных частиц)

,

где Q – заряд ионов, n – концентрация ионов, - подвижности положительных и отрицательных ионов соответственно.

 

3.18. Закон Ома:

a) - для участка цепи, не содержащего ЭДС,

где φ1 – φ2 =U - разность потенциалов (напряжение) на концах участка цепи; R – сопротивление участка;

 

б) - для участка цепи, содержащего ЭДС,

где ε12 - ЭДС источника тока; R12 - полное сопротивление участка (сумма внешних и внутренних сопротивлений);

в) - для замкнутой цепи,

где R – внешнее сопротивление цепи, r – внутреннее сопротивление.

 

Законы Кирхгофа

- для узлов;

- для контуров.

 

Сопротивление R и проводимость G проводника

 

; ,

где ρ – удельное сопротивление; γ - удельная проводимость; l - длина проводника; S – площадь поперечного сечения.

 



Просмотров 635

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!