Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Устройство оптической системы



Оглавление

 

1. Введение. Возможности метода. Атомизация пробы. Устройство плазменной горелки. Устройство оптической системы.

 

2. Атомизаторы. Пламя. Электрическая дуга. Элетрическая искра.

 

3. Линейный спектр испускания. Основные способы регистрации спектров в АЭС.

 

4. Заключение

 

5. Литература

 

Введение

Атомно-эмиссионная спектроскопия с индуктивно связанной плазмой это весьма популярный, простой и точный метод анализа. Суть его в том, что при возбуждении и ионизации с последующим переходом в стабильное состояние каждый элемент периодической таблицы испускает квант света с определенной длиной волны. Соответственно, определяя длину волны, можно провести качественный анализ, а определяя интенсивность испускания волны данной длины – количественный. Отсюда еще одно важное достоинство атомно-эмиссионной спектроскопии – оба этих анализа выполняются одновременно.

Возможности метода

Метод ICP AES предназначен для определения преимущественно металлов и металлоидов. Выделяется своей экспрессивностью, удобством и простотой использования. Отлично подходит для анализа воды на металлы, в том числе и тяжелые. Также можно успешно анализировать различные геологические породы, биологические объекты. Достаточно хорошо получаются анализы сплавов, хотя тут могут возникнуть трудности, связанные с наличием и процентным содержанием некоторых металлов, но они обычно устраняются пробоподготовкой и методикой проведения анализа.

 

Атомизация пробы

Современными источниками атомизации и возбуждения служат индуктивно-связанная плазма, плазма постоянного тока, а также микроволновая плазма с емкостной или индуктивной связью.

Чаще всего применяют индуктивно-связанную плазму. Основными узлами данного прибора являются: система подачи пробы, распылитель, узел атомизации пробы (кварцевая горелка с плазмой), оптическая камера, и собственно детектор.

 

Устройство плазменной горелки:

 

Плазменная горелка состоит из трех концентрических кварцевых трубок, непрерывно продуваемых аргоном. Верхняя часть горелки помещена внутрь катушки индуктивности высокочастотного генератора (обычно 27,12 или 40,68 МГц). Высокочастотная аргоновая плазма инициируется с помощью искрового разряда. При этом аргон частично ионизируется, в нем возникают свободные носители заряда. Затем в электропроводящем газе инициируется высокочастотный ток, вызывающий дальнейшую лавинообразную ионизацию газа. Ввиду малого сопротивления плазмы она быстро нагревается до 6000-10000 К без прямого контакта с электродами. В центральный канал горелки в виде аэрозоля поступает раствор пробы. При этом стабильность плазмы не нарушается. В плазме происходит высушивание пробы, диссоциация на атомы, ионизация и термическое возбуждение образующихся атомов и ионов.

Ввиду относительно долгого пребывания пробы в плазме и высоких температурах, условия возбуждения близки к оптимальным. Химические матричные эффекты в ICP обычно довольно низки. По этим причинам пределы обнаружения весьма малы.

Дополнительным достоинством метода является возможность плавно регулировать условия атомизации и возбуждения. Поэтому при анализе методом ICP можно подобрать «компромиссные» условия, обеспечивающие одновременное определение множества элементов. Таким образом, ICP-АЭС – типичный многоэлементный метод анализа. Диапазон линейности градуировочного графика достигает пяти-шести порядков (на практике обычно используют 3-4 порядка). Воспроизводимость тоже весьма высока.

Недостатком метода является очень большой расход аргона.

Устройство оптической системы

В принципе сама суть того, как обрабатывается пучок света, несложна. Через входную щель он поступает в оптическую камеру, где проходит 1 или несколько фокусирующих зеркал, попадает на монохроматор, далее преобразованный пучок света вновь проходит через фокусирующие линзы и попадает на детектор.

Особого внимания заслуживает монохроматор. В современных приборах в основном используются дифракционные решетки и решетки Эшелле. Свет, попадая на монохроматор, разлагается на монохроматические пучки, которые далее проходя через специальную систему линз попадают на детектор. В более ранних версиях ICP применялись системы со сканирующим монохроматором, определение элементов происходило последовательно, с накоплением сигнала. Рабочий диапазон 220-800нм. При вакуумируемой оптической камере или камере с атмосферой азота (во избежание поглощения УФ части спектра воздухом) – 170-800нм.

 

Атомизаторы

Основные типы источников атомизации и возбуждения

Тип источника атомизации Т, ºC Состояние пробы С min, % масс Относит. станд. отклонен
пламя 1500 - 3000 раствор 10-7 – 10-2 0,01 – 0,05
электрическая дуга 3000- 7000 твердая 10-4 – 10-2 01 – 0,2
электрическая искра 10000 -12000 твердая 10-3 – 10-1 0,05 – 0,10
Индуктивно связанная плазма 6000 - 10000 раствор 10-8 – 10-2 0,01 – 0,05

 

Пламя. Пламенный вариант метода основан на том, что определяемое вещество в виде аэрозоля вместе с используемым растворителем попадает в пламя газовой горелки. В пламени с анализируемым веществом протекает целый ряд реакций и появляется излучение, которое характерно только для исследуемого вещества и являющееся в данном случае аналитическим сигналом.

Существуют определённые аналитические характеристики пламени. Пламя, безусловно, должно быть стабильным, безопасным, и стоимость компонентов для его поддержания должна быть невысока; оно должно иметь относительно высокую температуру и медленную скорость распространения, что повышает эффективность десольватации и получения пара, и в результате приводит к большим сигналам эмиссии, абсорбции или флуоресценции. К тому же, пламя должно обеспечивать восстановительную атмосферу. Многие металлы в пламени имеют тенденцию образовывать устойчивые оксиды. Эти оксиды тугоплавкие, трудно диссоциируют при обычных температурах в пламени. Для повышения степени образования свободных атомов их необходимо восстановить. Восстановление может быть достигнуто почти в любом пламени, если создать скорость потока горючего газа по большей, чем это необходимо стехиометрии горения. Такое пламя называют обогащённым. Обогащенные пламёна, образуемые такими углеводородными горючими, как ацетилен, обеспечивают прекрасную восстановительную атмосферу, обусловленную большим количеством углерод-содержащих радикальных частиц.

Пламя – самый низкотемпературный источник атомизации и возбуждения, используемый в АЭС. Достигаемые в пламени температуры оптимальны для определения лишь наиболее легко атомизируемых и возбудимых элементов – щелочных и щелочно-земельных металлов. Для них метод фотометрии пламени является одним из самых чувствительных – до 10-7 % масс. Для большинства других элементов пределы определения на несколько порядков выше. Важное достоинство пламени – как источника атомизации – высокая стабильность и связанная с ней хорошая воспроизводимость результатов измерений (Sr – 0,01-0,05).

Электрическая дуга. В АЭС используют дуговые разряды постоянного и переменного тока. Между парой электродов (как правило, угольных) пропускают электрический разряд. При этом в углубление одного из электродов помещают пробу в твердом состоянии. Температура дугового разряда составляет 3000 – 7000 ºC. Таких температур достаточно для атомизации и возбуждения большинства элементов, кроме наиболее трудновозбудимых неметаллов – галогенов. Поэтому для большого числа элементов пределы обнаружения в дуговом разряде ниже, чем в пламени, и составляют - 10-4 - 10-2 масс. %. Дуговые атомизаторы в отличие от пламенных, не обладают высокой стабильностью работы, поэтому воспроизводимость результатов не велика и составляет Sr – 0,1-0,2. Поэтому одна из основных областей применения дуговых атомизаторов - качественный анализ.

Электрическая искра. Искровой атомизатор устроен так же, как и дуговой и предназначен в первую очередь для анализа твёрдых образцов на качественном уровне.

 

 


Просмотров 1070

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!