![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Кабели и разъемы накопителей
В большинстве накопителей на жестких дисках предусмотрено несколько интерфейсных разъемов для подключения к системе, подачи питания, а иногда и для заземления корпуса. В большинстве накопителей имеется по меньшей мере три типа разъемов: - интерфейсный разъем (или разъемы); - разъем питания; - разъем (или зажим) для заземления (необязательно). Наибольшее значение имеют интерфейсные разъемы, потому что через них передаются данные и команды в накопитель и обратно. Многие стандарты интерфейсов предусматривают подключение нескольких накопителей к одному кабелю (шине). Естественно, в этом случае их должно быть не меньше двух; в интерфейсе SCSI допускается подключение до семи накопителей к одному кабелю (Ultra SCSI-2 поддерживает до 15 устройств). В некоторых стандартах для данных и управляющих сигналов предусмотрены отдельные разъемы, поэтому накопитель и контроллер соединяются двумя кабелями, однако большинство современных устройств IDE и SCSI подключаются с помощью одного кабеля. Разъемы питания накопителей на жестких дисках обычно такие же, как и у дисководов для гибких дисков. В большинстве накопителей используются два напряжения питания (5 и 12 В), но малогабаритным моделям, разработанным для портативных компьютеров, достаточно напряжения 5 В. Как правило, от источника в 12 В питается схема управления шпиндельным двигателем и привод головок, а напряжение 5 В поступает на прочие схемы. Многие накопители на жестких дисках потребляют несколько большую мощность, чем дисководы для гибких дисков. Проверьте, достаточно ли мощности блока питания компьютера для нормальной работы всех установленных в системе накопителей. Потребление тока от источника в 12 В зависит от размеров устройства: чем больше отдельных дисков входит в "пакет" и чем больше диаметр каждого из них, тем большая мощность необходима для приведения их в движение. Кроме того, для получения большей частоты вращения дисков необходимо также увеличивать мощность. Например, потребляемая мощность для накопителей формата 3,5 дюйма в среднем примерно в 2-4 раза меньше, чем для полноразмерных устройств формата 5,25 дюйма. Некоторые накопители особо малых форматов (2,5 и 1,8 дюйма) потребляют всего около 1 Вт электрической мощности. Зажим для заземления необходим для того, чтобы обеспечить надежный контакт между общим проводом накопителя и корпусом системы. В компьютерах, где накопители крепятся непосредственно к корпусу с помощью металлических винтов, специальный провод заземления не нужен. В некоторых компьютерах накопители монтируются на пластмассовых или стеклотекстолитовых направляющих, которые, естественно, электрически изолируют корпус накопителя от корпуса системы. В этом случае их обязательно нужно соединить дополнительным проводом, подключаемым к упомянутому зажиму. При плохом заземлении накопителя возникают сбои в его работе, ошибки при считывании и записи и т.п.
Характеристики накопителей на жестких дисках Если вы собрались покупать новый накопитель или просто хотите разобраться в том, каковы различия между устройствами разных семейств, сравните их параметры. Ниже приведены критерии, по которым обычно оценивают качество жестких дисков. - надежность; - быстродействие; - емкость. Надежность В описаниях накопителей можно встретить такой параметр, как среднестатистическое время между сбоями (Mean Time Between Failures — MTBF), которое обычно колеблется от 20 до 500 тыс. часов и более. Они являются чисто теоретическими. Для правильного понимания этого важного параметра накопителя следует знать, как производители его вычисляют. Большинство из них довольно продолжительное время выпускают накопители на жестких дисках, которые работают в компьютерах пользователей миллионы часов (если просуммировать время работы всех моделей). Для всех моделей накопителя вычисляется коэффициент сбоев отдельных компонентов, который затем учитывается при проектировании компонентов нового накопителя. Для платы управления используются стандартизированные промышленные методы предсказания сбоев. Таким образом, производитель может для новой модели накопителя на жестких дисках оценить вероятность сбоев на основе полученных ранее статистических данных. Не менее важно понимать, что среднестатистическое время между сбоями определяется для всех накопителей одной модели, а не для отдельного накопителя. Если указано, что это время равно 500 тыс. ч, значит, ошибка может появиться при общем времени работы 500 тыс. ч всех накопителей данной модели. Если выпущен 1 млн накопителей данной модели и все они одновременно работают, то можно ожидать ошибку каждые полчаса. Параметр "среднестатистическое время между сбоями" неприменим для отдельного накопителя или небольшой выборки накопителей одной модели. Кроме того, необходимо правильно понимать значение слова "ошибка". В определении описанного выше параметра под ошибкой подразумевается полный выход из строя накопителя (т.е. его следует вернуть производителю), а не появляющиеся ошибки чтения или записи файлов. Некоторые производители описанный параметр называют средним временем до первого сбоя. "Между сбоями" — это время, в течение которого восстановленный после первого сбоя накопитель будет работать до следующего (второго) сбоя.
S.M.A.R.T. S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology— технология самотестирования, анализа и отчетности) — это новый промышленный стандарт, описывающий методы предсказания появления ошибок жесткого диска. При активизации системы S.M.A.R.T. жесткий диск начинает отслеживать определенные параметры, чувствительные к неисправностям накопителя или указывающие на них. В результате такого отслеживания можно предсказать сбои в работе накопителя. Если на основе отслеживаемых параметров вероятность появления ошибки возрастает, S.M.A.R.T. генерирует для BIOS или драйвера операционной системы отчет о возникшей неполадке, который указывает пользователю на необходимость немедленного резервного копирования данных до того момента, когда произойдет сбой в накопителе. На основе отслеживаемых параметров S.M.A.R.T. пытается определить тип ошибки. По данным компании Seagate, 60% ошибок механические. Именно этот тип ошибок и предсказывается S.M.A.R.T. Естественно, не все ошибки можно предсказать, например появление статического электричества, внезапная встряска или удар, термические перегрузки и т.д. Технология S.M.A.R.T. была разработана компанией IBM в 1992 году. В том же году IBM выпустила жесткий диск формата 3,5 дюйма с модулем Predictive Failure Analysis (PFA), который измерял некоторые параметры накопителя и в случае их критического изменения генерировал предупреждающее сообщение. IBM передала на рассмотрение ANSI спецификацию технологии предсказания ошибок накопителя, и в результате появился ANSI-стандарт — протокол S.M.A.R.T. для SCSI-устройств (документ ХЗТ10/94-190). Для накопителей с интерфейсом IDE/ATA технология S.M.A.R.T. была реализована лишь в 1995 году. В разработке этого стандарта принимали участие Seagate Technology, Conner Peripherals (в настоящее время является подразделением Seagate), Fujitsu, Hewlett-Packard, Maxtor, Quantum и Western Digital. В результате работы этой группы компаний была опубликована спецификация S.M.A.R.T. для накопителей на жестких дисках с интерфейсом IDE/ATA и SCSI, и они сразу же появились на рынке. В накопителях на жестких дисках с интерфейсом IDE/ATA и SCSI реализация S.M.A.R.T. подобна, за исключением отчетной информации. В накопителях с интерфейсом IDE/ATA драйвер программного обеспечения интерпретирует предупреждающий сигнал накопителя, генерируемый командой S.M.A.R.T. report status. Драйвер запрашивает у накопителя статус этой команды. Если ее статус интерпретируется как приближающийся крах жесткого диска, то операционной системе посылается предупреждающее сообщение, а та, в свою очередь, информирует об ошибке пользователя. Такая структура в будущем может дополняться новыми свойствами. Операционная система может интерпретировать атрибуты, которые передаются с помощью расширенной команды report status. В накопителях с интерфейсом SCSI S.M.A.R.T. информирует пользователя только о двух состояниях накопителя — о нормальной работе и об ошибке. Для функционирования S.M.A.R.T. необходима поддержка на уровне BIOS или драйвера жесткого диска операционной системы (и, естественно, накопитель на жестких дисках, который поддерживает эту технологию). S.M.A.R.T. поддерживается несколькими программами, например Norton Smart Doctor компании Symantec, EZ от Microhouse International или Data Advisor от Ontrack Data International. Обратите внимание, что традиционные программы диагностики диска, например Scandisk и Norton Disk Doctor, работают с секторами данных на поверхности диска и не отслеживают всех функций накопителя в целом. В некоторых современных накопителях на жестких дисках резервируются секторы, которые в будущем используются вместо дефектных. Как только "вступает в дело" один из резервных секторов, S.M.A.R.T. информирует об этом пользователя, в то время как программы диагностики диска не сообщают о каких-либо проблемах. Каждый производитель накопителей на жестких дисках по-своему реализует параметры монитора S.M.A.R.T., причем большинство из них реализовали собственный набор параметров. В некоторых накопителях отслеживается высота "полета" головок над поверхностью диска. Если эта величина уменьшается до некоторого критического значения, то накопитель генерирует ошибку. В других накопителях выполняется мониторинг кодов коррекции ошибок, который показывает количество ошибок чтения и записи на диск. В большинстве дисков реализована регистрация следующих параметров: - высота полета головки над диском; - скорость передачи данных; - количество переназначенных секторов; - производительность времени поиска; - количество повторов процесса калибровки накопителя. Каждый параметр имеет пороговое значение, которое используется для определения того, появилась ли ошибка. Это значение определяется производителем накопителя и не может быть изменено. Если S.M.A.R.T. в процессе мониторинга накопителя обнаруживает несоответствие параметров, то драйверу диска отправляется предупреждающее сообщение, а драйвер информирует о "нестандартной ситуации" операционную систему, которая оповещает пользователя о необходимости немедленного резервного копирования данных. В этом предупреждающем сообщении может также содержаться информация о типе, производителе, номере накопителя.
Быстродействие Важным параметром накопителя на жестком диске является его быстродействие. Этот параметр для разных моделей может варьироваться в широких пределах. Быстродействие накопителя можно оценить по двум параметрам: - среднестатистическому времени поиска (average seek time); - скорости передачи данных (data transfer rate). Под среднестатистическим временем поиска, которое измеряется в миллисекундах, подразумевается среднее время перемещения головок с одного цилиндра на другой (причем расстояние между этими цилиндрами может быть произвольным). Измерить этот параметр можно, выполнив достаточно много операций поиска случайно выбранных дорожек, а затем разделив общее время, затраченное на эту процедуру, на количество совершенных операций. В результате будет получено среднее время однократного поиска. Производители дисководов в качестве среднего времени поиска часто указывают временной интервал, который необходим для перемещения головок на расстояние, равное одной трети ширины зоны записи данных на диске. Среднее время поиска почти исключительно зависит от конструкции накопителя (точнее, от механизма привода головок), а не от типа интерфейса или контроллера. Существует довольно много программ, предназначенных для "аттестации" жестких дисков. К результатам такого тестирования следует относиться скептически. В большинстве накопителей SCSI и IDE используется так называемое преобразование секторов, поэтому, даже если на накопитель выдается команда перевода головок на заданный цилиндр, это отнюдь не означает, что они на самом деле переместятся. Проверять накопители указанных типов с помощью программ аттестации бессмысленно. Кроме того, при работе устройств SCSI выполняются некоторые дополнительные операции, связанные с трансляцией в накопитель управляющих кодов через шину SCSI. Программы аттестации не учитывают этих дополнительных потерь времени
Среднее время доступа Существует еще один параметр, позволяющий оценить быстродействие, — среднее время доступа, которое отличается от времени поиска тем, что при его измерении учитывается запаздывание. Под запаздыванием в данном случае подразумевается среднее время, которое уходит на то, чтобы искомый сектор оказался под головкой после ее выведения на дорожку. В среднем величина запаздывания равна половине периода обращения диска и при частоте вращения 3 600 об/мин составляет 8,33 мс. Если диск вращается в два раза быстрее, то запаздывание будет в два раза меньше. Что же касается среднего времени доступа, то оно определяется как сумма среднего времени поиска и запаздывания. Этот параметр (среднее время доступа) характеризует среднее время, необходимое для получения доступа к данным, которые записаны в выбранном случайным образом секторе.
Запаздывание Запаздывание существенно влияет на общее быстродействие накопителя. При его снижении сокращается время доступа к данным и файлам, но уменьшить запаздывание можно только за счет увеличения частоты вращения дисков. Величины запаздывания для наиболее распространенных скоростей вращения дисков приведены в таблице 3. В накопителях с частотой вращения дисков 7 200 об/мин величина запаздывания составляет 4,17 мс, а для частоты вращения диска 10 000 об/мин еще меньше — 3,0 мс. С ростом частоты вращения не только уменьшается запаздывание, но и возрастает скорость передачи данных (их считывание и запись после выведения головок на заданный сектор происходят с большей скоростью).
Таблица 3 - Скорости вращения жестких дисков и величины запаздывания
Скорость передачи данных Вероятно, наиболее важной характеристикой при оценке общей производительности накопителя является скорость передачи данных, но, с другой стороны, она же считается наименее понятной. Проблема состоит в том, что в настоящее время для каждого дисковода могут быть определены сразу несколько скоростей передачи данных. Большинство производителей дисковых накопителей обычно сообщают пять скоростей передачи данных. Одна из них — это скорость передачи данных интерфейса, которая в свременных дисководах АТА достигает 100 Мбайт/с. Другими спецификациями скоростей являются средние скорости передачи данных, которые могут быть выражены в виде максимальной, минимальной, фактической максимальной и фактической минимальной скоростей. Если средняя скорость не указана, ее можно легко вычислить. Средняя скорость передачи данных считается более важной характеристикой, чем скорость передачи данных интерфейса. Это связано с тем, что средняя скорость представляет собой действительную скорость непосредственного считывания данных с поверхности жесткого диска. При этом максимальная скорость является, скорее, ожидаемой постоянной скоростью передачи данных. Компания-изготовитель дисководов обычно указывает величины минимальной и максимальной скоростей передачи данных. В настоящее время большинство современных накопителей имеют зональную запись с различным количеством секторов на дорожках. Как правило, поверхность диска разделена на 16 зон, причем число секторов внутренней зоны примерно в два раза меньше, чем внешней (таким образом, скорость передачи данных тоже в два раза меньше). Скорость вращения жесткого диска постоянна, поэтому скорость считывания данных с внешних цилиндров (где число секторов на дорожке наибольшее) выше, чем с внутренних. Существует определенное различие между формальной и фактической скоростями передачи данных. Формальная скорость определяет, насколько быстро биты (единицы емкости памяти) могут быть считаны с поверхности жесткого диска. Далеко не все биты являются битами данных (это может быть промежуток между секторами или идентификатор битов). Кроме того, следует учитывать время, затрачиваемое при поиске данных на перемещение головок с дорожки на дорожку. Таким образом, фактическая скорость передачи данных представляет собой реальную скорость считывания данных с диска или их записи на диск. Обратите внимание, что большинство производителей указывают только формальную скорость передачи данных. Для определения фактической скорости следует учесть, что она составляет примерно две трети формальной скорости. В том случае, если будет указана только максимальная скорость передачи данных (формальная или фактическая), с большой долей вероятности можно допустить, что минимальная скорость составит примерно половину, а средняя — три пятых максимальной скорости передачи данных. Существует два основных фактора, непосредственно влияющих на скорость передачи данных: скорость вращения диска и плотность линейной записи, или количество секторов на дорожке. Например, при равном количестве секторов на дорожке скорость передачи данных будет выше у дисковода, имеющего большую скорость вращения. По аналогии с этим, при равной скорости вращения накопитель с большей плотностью записи будет иметь большую скорость передачи. При сравнении эффективности накопителей следует учитывать оба фактора.
![]() |