![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Энергетической валютой» клетки является АТФ
Такое «центральное» расположение молекулы АТФ позволяет ей выполнять роль донора высокоэнергетического фосфата для соединений, расположенных ниже в таблице, превращаясь при этом в АДФ, а АДФ - роль акцептора высокоэнергетического фосфата у соединений, расположенных выше. Цикл АТФ/АДФ связывает, тем самым, процессы генерирующие «~Р» с процессами, использующими «~Р». Сумму всех адениловых нуклеотидов в клетке (АТФ,АДФ и АМФ) называют адениловой системой. Процессы гидролиза и синтеза АТФ происходят с высокой скоростью, поскольку общий фонд АТФ очень маленький и для поддержания процессов жизнедеятельности в клетке его хватает только на несколько секунд. В клетках организмов животных есть три основных источника ~P для синтеза АТФ. · окислительное фосфорилирование – механизм образования АТФ, использующий для этого энергию градиента электрохимического потенциала, возникающего на внутренней мембране митохондрий. · Субстратное фосфорилирование – механизм синтеза АТФ, использующий энергию макроэргических соединений, образующихся в процессе метаболизма (1,3- дифосфоглицериновая кислота, сукцинил-КоА и т.д.). · Синтез АТФ с использованием макроэргов, выполняющих своеобразную роль молекул – депо макроэргических связей (креатинфосфат). Тому, каким образом живые системы преобразуют энергию поступающих из внешней среды химических соединений, в энергию макроэргических соединений и посвящена значительная часть курса биохимии.
Митохондрии постоянные органеллы всех клеток (кроме эритроцитов) имеют 2 мембраны:
Межмембранное пространство: в нем активны аденилаткиназа и нуклеозиддифосфаткиназа. В процессах старения генома митохондрии мигрируют в ядро, т. е. возникают летальные мутации, связанные с деформацией митохондриальных белков генерирующих АТФ.
Цикл трикарбоновых кислот или цикл лимонной кислоты был открыт Гансом Кребсом в 1937 г. Он брал измельченные мышцы голубя, добавлял на них трикарбоновые кислоты и определял скорость дыхания, те трикарбоновые кислоты, которые составляют цикл Кребса усиливают дыхание. Цикл Кребса - исходный субстрат ацетил КоА, который взаимодействует с ЩУК под действием фермента цитратсинтетазы. За один оборот цикла Кребса происходит полное окисление одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление ацетил-КоА, а коферменты НАД и ФАД должны снова окисляться. Это и происходит в ДЦ. Освобождающаяся при окислении ацетил-КоА энергия, расходуется на образование макроэргических связей АТФ. Из 4 пар атомов водорода, 3 пары переносятся через НАД и одна пара через ФАД. На каждую пару атомов водорода в системе БО образуется 3АТФ (1НАДН2 = 1АТФ). Следовательно, всего 9АТФ; одна пара атомов попадает в систему БО через ФАД, - в результате образуется 2АТФ. Кроме этого в ходе сукцинаткиокиназной реакции образуется 1ГТФ = 1АТФ. Поэтому в целом, в ходе цикла Кребса образуется 12АТФ. Биологическое значение ЦТК. ЦТК - универсальный компонент БО, который образуется на принципе унификации, что имеет огромное значение, потому что организм не может точно дозировать потребность в каждом субстрате. Унификация позволяет уравновешивать и оптимизировать соотношение основных субстратов, т. е. если имеется избыток углеводов, то часть их перекачивается в липиды, если избыток белка, то тоже - в липиды и углеводы. Энергетическая функция. ЦТК - конечный этап БО, в котором окисляются унифицированные соединения различного происхождения.
Пластическая функция. Поскольку ЦТК «питается» субстратами различного происхождения, то он может быть источником углеродных скелетов для различных веществ. ЩУК à Цитрат à синтез ЖК, т. е. избыток углеводов депонируется в виде нейтрального жира. Сукцинил КоА à синтез ГЛУ, АРГ, ПРО, ГИС. a-кетоглутарат à синтез гема (Hb, цитохромы, каталаза, пероксидаза). ГНГ (образование Гл из неуглеводных компонентов).
Регуляторная. Перекачка субстратов из одного в другой.
Регуляция ЦТК. ЦТК связан с предшествующими стадиями энергетического обмена (гликолиз, окисление ЖК и АК), поэтому механизмы регуляции этих процессов будут справедливы и для ЦТК: 1) ретроингибирование; 2) путем изменения концентрации субстрата на входе ЦТК; 3) аллостерическаярегуляция (с помощью НАД, НАДН2, АТФ); 4) ионная (pH, [Ca++]). Так как цикл Кребса начинается со стадии ЩУК + ацетил КоА, то эти метаболиты и управляют интенсивностью ЦТК. Первым регуляторным фактором является концентрация ЩУК, которая в основном образуется из ПВК, ацетил КоА в принципе тоже: +CO2 -CO2 ЩУК <----- ПВК ------> ацетил КоА +ГТФ ПВК же образуется из углеводов (Гл), поэтому при диабете или углеводном голодании наблюдается недостаток ПВК, а значит и ЩУК и ЦТК блокируются. Ацетил-КоА не является лимитирующим субстратом, т. к. в основном образуется при окислении ЖК. Но в то же время ЩУК - конкурентный ингибитор сукцинатдегидрогеназы, поэтому при избытке ЩУК, ЦТК блокируется на 6 стадии (так называемое «щуковое торможение»). Это торможение можно убрать ГЛУ, который переаминирует ЩУК в АСП. Второй регуляторный фактор - концентрация НАД и НАДН2. В живых системах концентрация НАД + НАДН2 = const. Любые факторы, ведущие к увеличению НАД.Н2 (гипоксия, алкогольная интоксик5ация) и дефициту НАД+ блокирует ЦТК. Следовательно увеличение концентрации НАД+ при активной работе ДЦ стимулирует ЦТК. Так как АТФ является косвенно конечным продуктом ЦТК, то ее избыток блокирует ЦТК, а значит АДФ стимулирует ЦТК. (АДФ рассматривается как аллостерический активатор изоцитратдегидрогеназы). Стимулятором ЦТК является также кислород, потому что он стимулирует распад АТФ. Нормальная концентрация Ca2+ в клетке 10-7 моль. При увеличении концентрации кальция до 10-6 моль активируются дегидрогеназные реакции: пируватДГ, изоцитратДГ, альфа-КГДГ, а значит и ЦТК. Цикл Кребса активируется при сердечной недостаточности. Это объясняется тем, что миокард не может самостоятельно убрать избыток Ca2+ и эту роль берут на себя митохондрии, возрастает потребность в кислороде.
Дыхательная цепь. Поэтапное «контролируемое сгорание» достигается путём промежуточного включения дыхательных ферментов, обладающих различным редокс-потенциалом. Редокс-потенциал (окислительно-восстановительный потенциал) определяет направление переноса протонов и электронов ферментами дыхательной цепи (рис.1). Редокс-потенциал выражается значением электродвижущей силы (в вольтах), которая возникает в растворе между окислителем и восстановителем, присутствующих в концентрации 1,0 моль/л при 25˚ С (при рН=7,0 оба находятся в равновесии с электродом, который может обратимо принимать электроны от восстановителя). При рН=7,0 редокс-потенциал системы Н2 /2Н++2ē равен – 0,42 v. Знак – означает, что данная редокс-пара легко отдаёт электроны, т.е. играет роль восстановителя, знак + указывает на способность редокс-пары принимать электроны, т.е. играть роль окислителя. Например, редокс-потенциал пары НАДН∙Н+/ НАД+ равен – 0,32 v, что говорит о высокой её способности отдавать электроны, а окислительно-восстановительная пара ½О2 /Н2О имеет наибольшую положительную величину +0,81 v, т.е. кислород обладает наивысшей способностью принимать электроны. В процессе окисления АцКоА в ЦТК, восстановленные формы НАДН2 и ФАДН2 поступают в ДЦ, где энергия электронов и протонов трансформируется в энергию макроэргических связей АТФ. ДЦ - совокупность дегидрогеназ, которые транспортируют электороны и протоны с субстрата на кислород. Принципы функционирования ДЦ основаны на 1-ом и 2-ом законах термодинамики. Движущей силой ДЦ является разность ОВП. Суммарная разность всей ДЦ составляет 1,1 В. Пункты фосфорилирования должны иметь перепад ОВП = 0,25 - 0,3 В. 1. Пара НАД-Н имеет ОВП = 0,32 В. 2. Пара Q-b - / - /- - 0 В. 3. O2 - имеет +0,82 В. ДЦ локализуется во внутренней мембране митохондрий и имеет 2 пути введения электронов и протонов или 2 входа; ДЦ образует 4 комплекса. 1 вход: НАД-зависимый (поступают электроны и протоны со всех НАД-зависимых реакций). 2 вход: ФАД-зависимый НАД ---->ФП Q --->b--->c1--->c--->aa3---->1/2O2 Янтарная кислота ---->ФП
Дыхательная цепь – форма реализации биологического окисления. Тканевое дыхание – это последовательность окислительно-восстанови-тельных реакций, протекающих во внутренней митохондриальной мембране с участием ферментов дыхательной цепи. Дыхательная цепь имеет чёткую структурную организацию, её компоненты формируют дыхательные комплексы, порядок расположения которых зависит от величины их редокс-потенциала (рис.5.1). Количество дыхательных цепей в отдельно взятой митохондрии из клеток разных тканей неодинаково: в печени – 5000, в сердце – около 20 000, следовательно, миокардиоциты отличаются более интенсивным дыханием, чем гепатоциты.
Субстраты тканевого дыхания подразделяются на 2 группы: 1. НАД-зависимые – субстраты цикла Кребса изоцитрат, α-кетоглутарат и малат. Это также пируват, гидроксибутират и β–гидрокси-ацил~КоА, глутамат и некоторые другие аминокислоты. Водород от НАД-зависимых субстратов c помощью НАД-зависимых дегидрогеназ передаётся на I-й комплекс дыхательной цепи. 2.ФАД-зависимые – сукцинат, глицерол-3-фосфат, ацил~КоА и некоторые другие. Водород от ФАД-зависимых субстратов передаётся на II-й комплекс дыхательной цепи. При дегидрировании субстратов НАД-зависимыми дегидрогеназами образуется восстановленная форма НАД (НАДH∙H+).
Указана окисленная форма кофермента НАД+. Этот кофермент является динуклеотидом (никотинамид-аденин-динуклеотид): в состав одного нуклеотида входит витамин РР (никотинамид), другой представляет собой АМФ. Способность кофермента играть роль промежуточного переносчика водородов связана с наличием в его структуре витамина РР. В электронно-протонной форме процесс обратимого гидрирования-дегидрирования может быть представлен уравнением (R- остальная часть кофермента): НАДH∙H+ может образовываться не только в митохондриях, но и в цитозоле клетки при протекании определённых процессов метаболизма. Однако цитоплазматический кофермент не может проникать в митохондрии. Водород восстановленного кофермента должен быть сначала перенесен на субстраты, которые могут проникать в митохондрии. Такими «Н2-переносящими субстратами» являются: Оксалацетат → малат Ацетоацетат → β-гидроксибутират Дигидроксиацетон фосфат → глицерол-3-фосфат
НАДH∙H+ затем окисляется 1-м комплексом дыхательной цепи. Рассмотрим работу этого комплекса. I комплекс цепи тканевого дыхания – НАДH∙H+-убихинон-оксидодуктаза. Первый комплекс является самым большим в дыхательной цепи (представлен 23-30 субъединицами). Он катализирует перенос водорода от НАДH∙H+ на убихинон (рис. 5.1 и рис. 5.3). В его состав входят кофермент ФМН (флавинмононуклеотид) и железосерные белки, содержащие негеминовое железо. Функция этих белков заключается в разделении потока протонов и электронов: электроны переносятся от ФМН∙Н2 к внутренней поверхности внутренней мембраны митохндрий (обращенной к матриксу), а протоны – к внешней поверхности внутренней мембраны и затем высвобождаются в митохондриальный метрикс. При транспорте протонов и электронов редокс-потенциал первого комплекса снижается на 0,38 v, что вполне достаточно для синтеза АТФ. Однако в самом комплексе АТФ не образуется, а высвобождающаяся в результате работы комплекса энергия аккумулируется (см. ниже образование электро-химического потенциала) и частично рассеивается в виде тепла. По своему строению ФМН – мононуклеотид, в котором азотистое основание представлено изоаллоксазиновым ядром рибофлавина, а пентозой является рибитол (иными словами, ФМН – это фосфорилированная форма витамина В2).
Функция ФМН заключается в акцепции 2 атомов водорода от НАДH∙H+ и передачи их железосерным белкам. Водород (2 электрона и 2 протона) присоединяется к атомам азота изоаллоксазинового кольца, при этом происходит внутримолекулярная перегруппировка двойных связей с образованием промежуточного семихинона – соединения свободнорадикальной природы (на схеме представлено суммарное уравнение реакции, где R – остальная часть молекулы)
II комплекс цепи тканевого дыхания –сукцинат-убихинон-оксидоредуктаза. Этот комплекс имеет меньшую молекулярную массу и также содержит железосерные белки. Сукцинат-убихинон-оксидоредуктаза катализирует перенос водорода от сукцината на убихинон. В состав комплекса входит кофермент ФАД (флавин-аденин-динуклеотид) и фермент сукцинатдегидрогеназа, который является одновременно ферментом цикла Кребса. Ацил~SКоА, 3-фосфо-глицерат и диоксиацетон фосфат также являются ФАД-зависимыми субстратами тканевого дыхания и с помощью этого кофермента контактируют со вторым комплексом. Рис. 5.3 Первый комплекс дыхательной цепи
Энергия включения водорода субстратов во II комплекс цепи тканевого дыхания рассеивается в основном в виде тепла, так как на этом участке цепи редокс-потенциал снижается незначительно и этой энергии для синтеза АТФ мало. Процесс восстановления ФАД протекает аналогично таковому ФМН. Кофермент Q или убихинон - гидрофобное соединение, является компонентом клеточных мембран, содержится в большой концентрации, относится к группе витаминов. относится к группе витаминов. Убихинон (коэнзим Q). Убихинон – небольшая липофильная молекула, по химическому строению представляющая собой бензохинон с длинной боковой цепью (число изопреноидных единиц колеблется от 6 у бактерий до 10 у млекопитающих). В дыхательной цепи коэнзим Q является своеобразным депо (пулом) водорода, который он получает от различных флавопротеинов. Липофильный характер молекулы убихинона обуславливает его способность свободно перемещаться в липидной фазе митохондриальной мембраны, перехватывая протоны и электроны не только от I и II комплексов дыхательной цепи, но и захватывая из митохондриального матрикса протоны. При этом убихинон восстанавливается с образованием промежуточного свободнорадикального продукта – семихинона . Восстановленная форма убихинона – убихинол – передаёт протоны и электроны на III комплекс дыхательной цепи.
Цитохромоксидаза имеет высокую степень сродства к кислороду и может работать при его низких концентрациях. аа3 - состоит из 6 субъединиц каждая из которых содержит гем и атом меди. 2 субъединицы составляют цитохром а, а остальные 4 относятся к цитохрому а3. Между НАД и ФП, b-c, a-a3 имеет место max перепад ОВП. Эти пункты являются местом синтеза АТФ (местом фосфорилирования АДФ). III комплекс цепи тканевого дыхания –убихинол-цитохром С-оксидоредуктаза. В состав III комплекса входят цитохромы b и с1, относящиеся к группе сложных белков хромопротеинов. Простетическая группа этих белков окрашена (chroma – краска) и близка по химическому строению к гему гемоглобина. Однако в противоположность гемоглобину и оксигемоглобину, в которых железо должно быть только в 2-х валентной форме, железо в цитохромах при работе дыхательной цепи переходит от двух- к трёхвалентному состоянию (и обратно). Как видно из названия, III комплекс переносит электроны от убихинола на цитохром С. Вначале электроны поступают на окисленную форму цитохрома b (Fe3+), который при этом восстанавливается (Fe2+), затем восстановленный цитохром b передаёт электроны окисленной форме цитохрома с, который также восстанавливается и, в свою очередь, передаёт электроны цитохрому С.
![]()
IV комплекс дыхательной цепи – цитохром С-оксидаза. Комплекс назван оксидазой из-за способности непосредственно взаимодействовать с кислородом. У млекопитающих этот крупный (~ 200 kD) трансмембранный белок состоит из 6-13 субъединиц, из которых некоторые кодируются митохондриальной ДНК. В состав IV комплекса входят 2 хромопротена – цитохром а и цитохром а3. В отличие от других цитохромов, цитохромы а и а3каждый содержат не только атом железа, но и атом меди. Медь в составе этих цитохромов при транспорте электронов также попеременно переходит в окисленное (Cu2+) и восстановленное (Cu+) состояние. Цитохром с-оксидаза катализирует одноэлектронное окисление 4-х восстановленных молекул цитохрома си при этом одновременно осуществляет полное (4-х электронное) восстановление молекулы кислорода:
Протоны для образования молекул воды поступают из матрикса. Следует заметить, что эта реакция весьма сложна и протекает через промежуточные стадии образования свободных радикалов кислорода. Окислительно-восстановительный потенциал IV комплекса является самым большим (+0,57 v), его энергии вполне достаточно для синтеза 3-х молекул АТФ, однако большая часть этой энергии используется на «перекачивание» протонов из матрикса митохондрий в межмембранное пространство. В связи с активным транспортом протонов цитохром с-оксидаза получила название «протонного насоса». Таким образом, тканевое дыхание представляет собой процесс транспорта электронов и протонов от НАД- или ФАД-зависимых субстратов на кислород, а также протонов, поставляемых матриксом митохондрий. При транспорте падает редокс-потенциал, что сопровождается высвобождением заключённой в субстратах тканевого дыхания энергии. Полное восстановление молекулярного кислорода воздуха в дыхательной цепи сопровождается образованием воды.
![]() |