Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Легирование и Модифицирование



Легирование (нем. legieren — «сплавлять», от лат. ligare — «связывать») — добавление в состав материалов примесей для изменения (улучшения) физических и химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур, различают объемное (металлургическое) и поверхностное (ионное, диффузное и др.) легирование.

В разных отраслях применяются разные технологии легирования.

В металлургии легирование производится в основном введением в расплав или шихту дополнительных химических элементов (например, в сталь — хрома, никеля, молибдена), улучшающих механические, физические и химические свойства сплава. Для изменения различных свойств (повышения твердости, износостойкости, коррозионной стойкости и т. д.) приповерхностного слоя металлов и сплавов применяются также и разные виды поверхностного легирования. Легирование проводится на различных этапах получения металлического материала с целями повышения качества металлургической продукции и металлических изделий.

Модифицирование

металлов и сплавов, введение в расплавленные металлы и сплавы Модификаторов, небольшие количества которых резко влияют на кристаллизацию, например вызывают формирование структурных составляющих в округлой или измельченной форме и способствуют их равномерному распределению в основной фазе. В результате М. сплавы приобретают более тонкую структуру, что улучшает их механические свойства. М. применяется при производстве отливок из чугуна (см. Модифицированный чугун) и силуминов (см. Алюминиевые сплавы) и др. М. отличается от микролегирования, при котором увеличение дозировки присадки приводит к обычному легированию (См. Легирование) (без явной границы между получаемыми эффектами). При М. увеличение дозировки присадки либо невозможно (из-за малой растворимости, летучести), либо неэффективно, либо вредно (перемодифицирование). Иногда при смешении двух различных расплавов наблюдается явление жидкого М. Эффект, подобный М., может быть получен при некоторых физических методах воздействия на жидкий металл, например при ультразвуковой обработке, наложении электромагнитного поля и др.

Модификатор

(от позднелат. modifico — видоизменяю, меняю форму)

металлов и сплавов, вещество, малые дозы которого существенно изменяют структуру и свойства обработанного им металла или сплава. Эффект от такой обработки называется Модифицированием.

в чём же, всё-таки, отличие модифицирования от легирования?

Дело в том, что понятие «легирование» связано с химическим составом сплава, а понятие «модифицирование» связано со строением сплава. То есть, это разные категории, которые сравнивать нельзя, как, например, чёрное и сладкое, или математику и песок.

Просто это относительно новые термины, которые, вероятно, изначально появились для обозначения одного и того же конкретного процесса – изменения свойств сплава путём введения в расплав некоторых элементов. Но модифицирование, по определению – это более широкое понятие. Это различные воздействия на структуру сплава, размер и форму структурных составляющих. Модифицирование может производиться как методом введения элементов в расплав, так и энергетическими воздействиями на расплав (ультразвук, импульсное давление), и т.д. В частности, можно сказать, что термин «микролегирование» означает процесс введения элементов в расплав, а модифицирование сплава (например, инокулирование – зарождение центров кристаллизации) – это эффект от подобного процесса.

Целесообразно было бы сравнивать понятия «легирование» и «микролегирование», но это уже другой вопрос.

Следует отметить, что в настоящее время существует некоторая несогласованность терминологии – разные авторы используют вышеупомянутые понятия с различными смысловыми оттенками.

 

Холодная листовая штамповка

Холодной листовой штамповкой называют штамповку деталей из листового, ленточного или полосового материала, осуществленную без значительного изменения его толщины. Холодной листовой штамповкой обрабатывают стали, цветные металлы, а также некоторые неметаллические материалы. Листовые штамповочные детали и изделия отличаются высокой точностью.

Листовая штамповка металлов является видом обработки давлением, при котором получают фасонные детали и заготовки методом пластического деформирования из исходной листовой заготовки в холодном и горячем состоянии.

Возможности по листовой штамповке металлов и деталей:

Изготовление любых видов деталей из цветных сплавов и сталей с разработкой технологии штамповки и проектированием штамповочного инструмента. Размеры получаемых изделий - до 500 мм в плане.

Листовой штамповкой обрабатывают как металлические, так и неметаллические детали. Металлические материалы для листовой штамповки получают прокаткой, волочением, прессованием, гибкой (профилированием), в виде листа, полосы, ленты, а также панелей, труб различных форм и сортового проката. Из неметаллических материалов методами листовой штамповки обрабатывают бумагу, картон, натуральную и искусственную кожу, слоистые и неслоистые пластики, различные синтетические материалы.

При проектировании технологического процесса изготовления деталей листовой штамповкой основной задачей является выбор наиболее рациональных операций и последовательности их применения.

 

Вытяжка. Вытяжка бывает с утонением и без. Вытяжка без утонения стенки превращает плоскую заготовку в полое пространственное изделие при уменьшении периметра вытягиваемой заготовки. Вытяжка с утонением стенки увеличивает длину заготовки в основном за счёт уменьшения толщины стенки исходной заготовки. См. схему вытяжки.

 

При вырубке и пробивке характер деформирования заготовки одинаков. Эти операции отличаются только назначением, вырубкой оформляют наружный контур детали (или заготовки для последующего деформирования), а пробивкой – внутренний контур (изготовление отверстий). Вырубка и пробивка выполняются на прессах для заготовок с толщиной листа <20 мм (вырубка) и толщиной <35 мм (пробивка).

 

Гибка - изготовление деталей с толщиной до 15 мм на универсальных листоштампах или специальных гибочных прессах. Минимальные радиусы гибки см. в таблице. Минимальные радиусы следует применять только в случае абсолютной конструкционной необходимости.

 

Геометрия токарного резца

При работе на токарных станках наиболее часто используют проходные прямые, проходные отогнутые, проходные упорные и отрезные резцы (рис. 2). Проходные прямые резцы предназначены для обработки наружных поверхностей с продольной подачей (рис. 2, а).

Проходной отогнутый резец наряду с обтачиванием с продольной подачей может применяться для подрезания торцев с поперечной подачей (рис. 2, б).

Проходной упорный резец применяется для наружного обтачивания с подрезкой уступа под углом 90° к оси (рис. 2, в).

Отрезной резец предназначен для отрезания частей заготовок и протачивания кольцевых канавок (рис. 2, г).

Токарный резец состоит из стержня, служащего для закрепления его в резцедержателе станка, и головки резца (рис. 3).

 

 

Рис. 2. Основные типы токарных резцов: а – проходной прямой;

б – проходной отогнутый; в – проходной упорный; г – отрезной

 

Различают следующие элементы режущей части резца: передняя поверхность, по которой сходит стружка. Главная задняя поверхность, обращённая к поверхности резания заготовки. Вспомогательная задняя поверхность, обращённая к обработанной поверхности заготовки. Главная режущая кромка – линия пересечения передней и главной задней поверхностей. Вспомогательная режущая кромка – линия пересечения передней и вспомогательной задней поверхностей. Вершина резца – точка пересечения главной и вспомогательной режущих кромок. Для увеличения износостойкости резца и повышения чистоты обработанной поверхности вершину иногда закругляют или срезают прямолинейной переходной кромкой.

Рис. 3. Элементы токарного резца

 

Для выполнения работы резания рабочей части резца необходимо придать форму клина. С этой целью резец затачивают по передней и задней поверхностям. Для определения углов, под которыми располагаются относительно друг друга поверхности рабочей части инструмента, вводят координатные плоскости (рис. 1).

Рис. 1. Поверхности и координатные плоскости

 

Основная плоскость (ОП) – плоскость, параллельная направлениям продольной и поперечной подач. У токарных резцов за основную плоскость принимают нижнюю опорную поверхность резца.

Плоскость резания (ПР) – плоскость, проходящая через главную режущую кромку резца касательно к поверхности резания заготовки. Главная секущая плоскость (N - N) – плоскость, перпендикулярная к проекции главной режущей кромки на основную плоскость.

Все три плоскости взаимно перпендикулярны.

 

В главной секущей плоскости измеряют: главный передний угол g , главный задний угол a , угол заострения b и угол резания d (рис. 4). Главный передний угол g образован плоскостью перпендикулярной плоскости резания и передней поверхностью. Главный задний угол a – плоскостью резания и главной задней поверхностью. Угол заострения b – передней и главной задней поверхностями b = 90° – (a + g ). Угол резания d образован плоскостью резания и передней поверхностью d = 90° – g .

 

В основной плоскости измеряют: главный угол в плане j , вспомогательный угол в плане j 1 и угол при вершине e (рис. 4). Главный угол в плане j образован проекцией главной режущей кромки на основную плоскость и направлением подачи. Вспомогательный угол в плане j 1 – проекцией вспомогательной режущей кромки на основную плоскость и направлением обратным подаче. Угол при вершине e – угол между проекциями главной и вспомогательной режущих кромок на основную плоскость: e = 180° – (j + j 1). В плоскости резания измеряется угол наклона главной режущей кромки l – угол между главной режущей кромкой и плоскостью параллельной основной.

Рис. 4. Углы проходного резца

 

Углы резца имеют следующее основное назначение:

1. Главный передний угол g оказывает большое влияние на процесс резания материала. С увеличением угла g уменьшается деформация срезаемого слоя, так как инструмент легче врезается в материал, понижается сила резания и расход мощности при одновременном улучшении условий схода стружки и повышения качества обработанной поверхности заготовки. Однако чрезмерное увеличение угла g ведёт к понижению прочности режущего инструмента. На практике величину угла g берут в зависимости от твердости и прочности обрабатываемого и инструментального материалов. При обработке хрупких и твёрдых материалов для повышения прочности и увеличения стойкости (времени работы инструмента до переточки) следует назначать углы g = – (5 – 10)° , при обработке мягких и вязких материалов передний угол g = + (10 – 25)° .

2. Угол a способствует уменьшению трения между обрабатываемой поверхностью заготовки и главной задней поверхностью резца. Величина его назначается в пределах от 6° до 12° .

3. Угол j влияет на шероховатость обработанной поверхности заготовки: с уменьшением угла j шероховатость уменьшается, однако при малых значениях угла j возможно возникновение вибраций в процессе резания, что снижает качество обработки.

4. С уменьшением угла j 1 шероховатость обработанной поверхности уменьшается, одновременно увеличивается прочность и снижается износ вершины резца.

5. Угол наклона главной режущей кромки l может быть положительным, отрицательным и равным нулю (рис. 5), что влияет на направление схода стружки. Если вершина резца является высшей точкой главной режущей кромки, то l отрицателен и стружка сходит в направлении подачи. Если главная режущая кромка параллельна основной плоскости, то l = 0 и стружка сходит по оси резца. Если вершина резца является низшей точкой главной режущей кромки, то l положителен и стружка сходит в направлении обратном подаче. При обработке заготовок на токарных автоматах стружку необходимо отводить так, чтобы она не мешала работе инструментов на соседних позициях.

Рис. 5. Углы наклона главной режущей кромки

 

Геометрические параметры токарных резцов зависят от свойств обрабатываемого материала, марки материала режущего инструмента и условий резания.

 

Холодная сварка

Холодная сварка - способ соединения деталей при комнатной (и даже отрицательной) температуре, без нагрева внешними источниками. Сварка осуществляется с помощью специальных устройств, вызывающих одновременную направленную деформацию предварительно очищенных поверхностей и нарастающее напряженное состояние, при котором образуется монолитное высокопрочное соединение. Холодной сваркой можно соединять, например, алюминий, медь, свинец, цинк, никель, серебро, кадмий, железо. Особенно велико преимущество холодной сварки перед другими способами сварки при соединении разнородных металлов, чувствительных к нагреву или образующих интерметаллиды.

 

Холодная сварка - сложный физико-химический процесс, протекающий только в условиях пластической деформации. Без пластической деформации в обычных атмосферных условиях, даже прилагая любые удельные сжимающие давления к соединяемым заготовкам, практически невозможно получить полноценное монолитное соединение. Роль деформации при холодной сварке заключается в предельном утонении или удалении слоя оксидов, в сближении свариваемых поверхностей до расстояния, соизмеримого с параметром кристаллической решетки, а также в повышении энергетического уровня поверхностных атомов, обеспечивающем возможность образования химических связей.

 

Качество сварного соединения определяется исходным физико-химическим состоянием контактных поверхностей, давлением (усилием сжатия) и степенью деформации при сварке. Оно также зависит от схемы деформации и способа приложения давления (статического, вибрационного). В зависимости от схемы пластической деформации заготовок сварка может быть точечной, шовной и стыковой.

 

Точечная сварка - наиболее простой и распространенный способ холодной сварки. Ее применение рационально для соединения алюминия, алюминия с медью, армирования алюминия медью. Ею можно заменить трудоемкую клепку и контактную точечную сварку.

 

При холодной точечной сварке (рис. 3.44, а) зачищенные детали 1 устанавливают внахлестку между пуансонами 3, имеющими рабочую часть 2 и опорную поверхность 4. При вдавливании пуансонов сжимающим усилием Р происходит деформация заготовок и формирование сварного соединения. Опорная поверхность пуансонов создает дополнительное напряженное состояние в конечный момент сварки, ограничивает глубину погружения пуансонов в металл и уменьшает коробление изделия.

Прочность точек может быть повышена на 10-20 % при сварке по схеме (рис. 3.45, а).

Рис. 3.44. Схема холодной точечной сварки (а), геометрия сварного соединения (б) и формы пуансонов (в)

 

Свариваемые детали 1 предварительно сжимаются прижимами 2 или одновременно с вдавливанием пуансона 3. Наличие зоны обжатия вокруг вдавливаемого пуансона уменьшает коробление детали, повышает напряженное состояние в зоне сварки, что приводит к периферийному провару за площадью отпечатка пуансона. Но при этом возникают технические затруднения, связанные с созданием двух высоких давлений на малой поверхности и устранением затекания металла между пуансоном и прижимом. Этот способ позволяет сваривать малопластичные материалы.

Ввиду простоты способа точечной холодной сварки специальные машины для ее выполнения большого развития не получили. Сварку успешно выполняют на самых различных серийных прессах с применением кондукторов, надежно фиксирующих свариваемые заготовки, чтобы исключить их коробление (рис. 3.45, б).

Рис. 3.45. Схема (а) и приспособление (б) для холодной точечной сварки с предварительным обжатием

 

Виды стружки

Процесс резания (стружкообразования) является сложным физическим процессом, сопровождающимся большим тепловыделением, деформацией металла при образовании стружки, износом режущего инструмента и наростообразованием на резце. Знание закономерностей процесса резания и сопровождающих его явлений позволяет рационально управлять этим процессом и обрабатывать детали более качественно, производительно и экономично.

В процессе резания различных материалов могут образовываться следующие основные виды стружек: сливные (непрерывные), скалывания (элементные) и надлома (рис. 82).

Рис. 82. Типы стружек: а —сливная, б — скалывания, в — надлома

 

Сливная стружка (рис. 82, а) образуется при резании вязких и мягких материалов, например мягкой стали, латуни. Резание протекает обычно при высокой скорости. Чем больше скорость резания и вязкость обрабатываемого металла, меньше угол резания и толщина среза, выше качество смазочно-охлаждающей жидкости, тем стружка ближе к сливной.

Стружка надлома (рис. 82, в) образуется при резании хрупких металлов, например серых чугунов. Такая стружка состоит из отдельных, почти не связанных между собой элементов. Обработанная поверхность при образовании такой стружки получается шероховатой, с большими впадинами и выступами. В определенных условиях, например при обработке чугунов средней твердости, стружка надлома может получиться в виде колец. Сходство со сливной стружкой здесь только внешнее, так как достаточно слегка сжать такую стружку в руке и она легко разрушится на отдельные элементы.

Стружка скалывания (рис. 82, б) занимает промежуточное положение между сливной стружкой и стружкой надлома и образуется при обработке некоторых сортов латуни и твердых сталей с большими подачами и относительно малыми скоростями резания. С изменением условий резания стружка скалывания может перейти в сливную и наоборот.

 

84) Литьё пластмасс под давлением

Литьё полимеров под давлением — технологический процесс переработки пластмасс путем впрыска их расплава под давлением в пресс-форму с последующим охлаждением.

Методом литья под давлением производится более трети от общего объема изделий из полимерных материалов. В связи с высокой производительностью и относительно высокой стоимости оснастки в основном применяется при крупносерийном и массовом производстве изделий. Сырье для литья представляет собой гранулы термопластов и термореактивные порошки, обладающих широким диапазоном механических и физических свойств. Термопластичные материалы сохраняют способность к повторной переработке после формования, а термореактивные при переработке претерпевают необратимые химические изменения, приводящие к образованию неплавкого и нерастворимого материала.

В процессе литья специально подготовленный материал поступает в зону шнека машины, где расплавляется, а затем под высоким давлением впрыскивается в пресс-форму через литниковые каналы, заполняя с высокой скоростью её полость, а затем, остывая, образует отливку. Кристаллизация материала происходит сначала у холодных стенок полости формы, а затем распространяется вглубь тела отливки.

 

Оборудование для литья пластмасс под давлением:

Литьё пластмасс под давлением осуществляется на специальных инжекционно-литьевых машинах — термопластавтоматах (ТПА). Существует два типа станков ТПА

- -Вертикальные, в которых впрыск материала осуществляется вертикально вниз, а основная плоскость разъема пресс-формы расположена горизонтально. Вертикальные станки обычно используются для изготовления изделий с закладными элементами.

-- Горизонтальные, с горизонтальным впрыском материала и вертикально расположенной плоскостью разъема формы.

 

Специальные методы литья пластмасс:

---Литьё с газом

При использовании этого метода уплотнение полимера происходит за счет подачи инертного газа под высоким давлением непосредственно в область изделия или вблизи этой области, поэтому процесс уплотнения проходит легче, чем в обычном литье под давлением. Литьё с газом позволяет получить изделия с хорошим качеством поверхности, без утяжек и коробления, с минимальным уровнем остаточных напряжений, с высокой стабильностью размеров.

---Литьё с водяным паром

---Многокомпонентное литьё

---Литьё с декорированием в форме (IMD)

---Литьё со сборкой в форме (IMA)

 



Просмотров 13041

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!