![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Для разработки мероприятий по борьбе с неблагоприятными природными процессами
Включение природы в процесс материального производства общества неизбежно ведет к изменению окружающей среды. Использо- \ вание природных ресурсов вызывает нарушение относительного рав- \ новесия, сложившегося между отдельными компонентами природы. Это усиливает динамичность природных территориальных ком- j плексов, ускоряет современные физико-географические процес- ! сы, многие из которых становятся неблагоприятными для различ- J ных отраслей хозяйства. Особенно страдает от неблагоприятных про- I цессов сельское хозяйство. Кроме того, неблагоприятные процес- \ сы наносят ущерб лесному хозяйству, горнодобывающей промышленности, транспортным магистралям, населенным пунктам и т.д. f Для предупреждения вредных стихийных процессов необходимы глубокие знания основных законов развития природы и изуче- | ние специфических закономерностей, обусловленных ее местными особенностями, т. е. необходим широкий географический подход. Природно-географической основой изучения неблагоприятных стихийных процессов является карта физико-географического районирования. Физико-географические регионы, ранг которых определяется задачами и необходимой детальностью работ, объединяют в группы по сходству природных предпосылок развития неблагоприятных стихийных процессов. Для каждой группы даются основные особенности природы с упором на факторы, благоприятствующие развитию стихийных процессов и явлений, перечисляются характерные для нее вредные процессы, масштабы и интенсивность их развития. При среднемасштабных исследованиях, когда объектом исследования являются районы, необходимо также тщательно проанализировать те виды хозяйственной деятельности, которые могут способствовать усилению развития неблагоприятных процессов: при развитии почвенной эрозии — фактическое использование земель и системы обработки почв; при ветровалах — формы ведения лесного хозяйства, способы и приемы заготовки древесины; при развитии селей — использование лесов, состояние и формы хозяйственного использования речек, виды рубок леса в их верховьях и т.д. В связи с тем, что набор и сочетание разнообразных неблагоприятных процессов, интенсивность их проявления зависят прежде всего от местных особенностей природы того или иного региона, разработка мер по борьбе с ними должна базироваться на детальном изучении природных условий конкретной территории. Эта задача решается путем полевых комплексных физико-географических исследований в средних и обобщенных крупных масштабах. Как и любое прикладное исследование, изучение территории с целью разработки мероприятий по борьбе с неблагоприятными процессами имеет свою специфику. Эта специфика определяется целью и задачами исследования. Она кроется в определенном внимании исследователя к современным процессам, в стремлении познать их механизм, закономерности проявления и размещения и прослеживается на всех этапах работ. Весь объем исследований по разработке мероприятий по борьбе с неблагоприятными природными процессами и их предупреждению выполняется в четыре этапа: 1) общее знакомство с природными условиями района работ и неблагоприятными стихийными процессами; 2) полевые ландшафтные исследования, включающие раскрытие связей различных процессов с особенностями того или иного ПТК; 3) углубленное изучение механизма неблагоприятных процессов, которое сопровождается получением количественных показателей; 4) разработка мероприятий по борьбе с неблагоприятными природными процессами применительно к различным ПТК.
Задачи второго этапа решаются путем экспедиционных исследований, в процессе которых не только ведут изучение и картографирование природных комплексов, но и фиксируют протекающие в комплексах современные физико-географические процессы. Их набор, интенсивность и особенности протекания тесно связаны со свойствами отдельных ПТК. В связи с этим каждый комплекс отличается от другого не только спецификой взаимосвязей компонентов, но и присущими ему стихийными процессами, что чрезвычайно важно для изучения пространственного размещения неблагоприятных процессов. При полевом изучении ПТК необходимо вскрыть причины, j выяснить те особенности комплекса, которые способствуют раз-витию неблагоприятных процессов, выделить главный фактор их формирования, а также те факторы и черты природы, воздействие на которые позволит предупредить их возникновение или уменьшить интенсивность протекания. Однако экспедиционные исследования по своей сути не дают возможности глубоко познать механизм протекающих в природе процессов. Они кратковременны, поэтому проводимые в их ходе ] наблюдения эпизодичны. Обычно они позволяют фиксировать не сами процессы, а их результаты, по которым ориентировочно оцениваются процессы. Например, объем и площадь конуса выноса j свидетельствуют об интенсивности эрозии в бассейне временного | водотока; размеры, количество и форма оползневых тел — об оползневых процессах, и т.д. Стремление получить количественные показатели, характеризующие неблагоприятные процессы, привело физико-географов к детальному их изучению на ключевых уча- j стках. Углубленное изучение механизма протекающих в природе про-цессов является задачей третьего этапа. Для ее решения необхо- j дима постановка стационарных или полустационарных наблюде- 1 ний. Эти наблюдения позволят оценить характер протекания про- I цессов в разные сезоны года, роль различных факторов в изменении их интенсивности и направленности, влияние хозяйственной деятельности человека на их усиление либо ослабление. В результате стационарных исследований могут быть получены надежные количественные характеристики неблагоприятных процессов, что чрезвычайно важно для разработки мер по борьбе с ними. Чем длительнее ряд наблюдений, тем больше достоверность их результатов, тем меньше элемент случайности в выводах. Для достижения удовлетворительных результатов необходимы хотя бы трех-пятилетние наблюдения. Однако подобные стационарные наблюдения проводились чрезвычайно редко. Перспективным для определения механизма природных процессов и возможностей влияния различных факторов на их характер является моделирование процессов в лабораторных условиях подобно тому, как это делается в отношении эрозионных и русловых процессов в эрозионной лаборатории МГУ. Завершает все проведенные исследования разработка мероприятий по борьбе и предупреждению неблагоприятных процессов. На этом этапе роль географов сводится к тому, чтобы показать, на какие стороны природы и в каком направлении необходимо воздействовать, чтобы получить ожидаемый эффект, какие особенности природы при этом должны быть учтены. Сами географы не разрабатывают никаких мероприятий. Они могут лишь, учитывая специфику местных природных условий, рекомендовать наиболее эффективные из имеющихся уже разработанных мероприятий. Безусловно, для подобных рекомендаций географы должны самым детальным образом изучить уже разработанные мероприятия и накопленный опыт их применения, чтобы исключить возможность ошибок в своих рекомендациях, ибо незнание не снимает ответственности за данные рекомендации. Как видим, роль физико-географов на разных этапах решения этой крупной комплексной проблемы неодинакова. Первые два этапа выполняют почти исключительно физико-географы (иногда с привлечением отдельных специалистов-отраслевиков). На третьем этапе физико-географы работают совместно с иными специалистами: геоморфологами, гидрологами, климатологами, лесоводами и т.д. в зависимости от набора процессов, за которыми ведется наблюдение. Физико-географу на этом этапе принадлежит координирующая роль. На четвертом этапе, как уже говорилось, физико-географ выступает лишь как консультант. Было бы абсолютно необоснованно ждать от географов полного решения всей этой проблемы. Наш пятилетний опыт участия в выполнении комплексной проблемы «Разработка мероприятий по борьбе с неблагоприятными природными процессами и их предупреждению в Украинских Карпатах» показал, что в горах из процессов, наносящих вред, наибо-
При подготовке к полевым работам в ходе изучения литературы и сбора фондового материала было установлено, что оползневые и эрозионные процессы наиболее широко развиты в районах, сложенных мелкоритмичным флишем, в зонах наиболее интенсивных тектонических нарушений, а также на участках, сложенных толщей суглинистых плиоцен-четвертичных отложений. Сведения, почерпнутые с геологических и топографических карт, позволили выделить участки преобладающего распространения этих процессов. Полученные в лесокомбинатах сведения о ветровалах показали, что им подвержены прежде всего ельники, частично ветровалы наблюдаются в смешанных насаждениях с преобладанием ели. Наиболее стойки по отношению к ветровалам смешанные насаждения с преобладанием пихты и бука. Соответствующая обработка материалов лесной таксации (кстати, на таксационных картах пихтовые и еловые насаждения не разделяются, поэтому обрабатывались таксационные описания) позволила оконтурить районы возможного распространения ветровалов. Статистическая обработка материалов по ветровалам за 20 лет, предшествовавших исследованиям, раскрыла и некоторые закономерные их связи с иными факторами природной среды (крутизной и экспозицией склонов, высотой местности и т.д.). Таким образом, целенаправленное изучение имеющихся материалов позволило установить некоторые особенности природных процессов, их зависимость от ряда факторов и районы наибольшего распространения. Такая подготовка дала возможность наметить ключевые участки для детального изучения. Однако в подготовительный период были обнаружены лишь некоторые закономерности и особенности неблагоприятных процессов, основная работа по их изучению выполнялась в полевой период. В поле проводилось ландшафтное картографирование и детальное изучение урочищ. Была установлена неравномерность распространения неблагоприятных процессов в границах ареала, выделенного в подготовительный период, и их приуроченность к отдельным ПТК. Определены связи неблагоприятных процессов со всем комплексом природных условий, их специфика и зависимость от особенностей ПТК, наиболее благоприятное сочетание различных факторов, вызывающее резкое усиление неблагоприятных процессов и т.д. Например, осыпи в границах территории, сложенной мелкоритмичным флишем, обнаруживают приуроченность к среднекру-тым и крутым безлесным склонам. Не фиксировались они ни на участках, сложенных мощной толщей рыхлых отложений, ни на хорошо задернованных среднекрутых склонах. На участках наиболее значительного проявления неблагоприятных процессов проводилось детальное изучение их следов: при ветровалах — направление падения деревьев, характер распространения корневой системы, объем воронок от корней поваленных деревьев, характер материала, их слагающего, высота, крутизна и экспозиция склона ветровального участка, характер его границ, общее положение, водно-физические свойства грунтов; при селях — объем конуса выноса селевого потока, характер его русла, особенности селесборов и т.д. Такое изучение отдельных ключевых участков позволило получить сведения по характеристике процессов и некоторые их количественные показатели. Таким образом, в ходе полевых исследований была не только составлена ландшафтная карта и дана характеристика закартиро-ванных комплексов, но и получены сведения о причинах и закономерностях неблагоприятных процессов в рамках разных природных комплексов. Результаты изучения природных комплексов и современных физико-географических процессов были представлены в виде отчета по теме, состоящего из ландшафтной карты и текстовой части. На карте цветом или цветом в сочетании со штриховкой показаны различные классификационные единицы ПТК. Внемасштаб-ными знаками или фоновыми значками даны наиболее типичные для того или иного комплекса неблагоприятные процессы. В легенде раскрыты особенности природных комплексов и характерные для них процессы. Карту дополняет текст с детальной характеристикой всех выделенных комплексов и природных процессов с раскрытием их специфики в разных комплексах и с количественными показателями. Отчетная карта и текстовая характеристика являются исходным материалом для планирования углубленных исследований специалистов. В то же время на карте показаны группы сходных по своим природным особенностям ПТК, для каждой из которых должна планироваться определенная система мероприятий по предупреждению неблагоприятных процессов. Для успешной борьбы с неблагоприятными природными процессами в Карпатах было рекомендовано проводить углубленные стационарные и полустационарные исследования, установить более тесный контакт между коллективами ученых, которые занимаются изучением природы, и производственными организациями, осуществляющими эксплуатацию природных ресурсов. В связи с принятием правительственной программы «Охрана ландшафтов России и рациональное природопользование» подобного рода прикладные ландшафтные исследования в скором времени могут быть востребованы.
Прогнозирование в настоящее время приобрело очень большое значение почти во всех отраслях науки и хозяйства, и поэтому вполне закономерно, что прогнозированием заинтересовались и географы. В последнюю четверть XX столетия в географических изданиях постоянно публиковались работы по вопросам географического прогноза. Однако проблема прогноза чрезвычайно сложна, и говорить о сложившейся методике географического прогнозирования пока еще преждевременно. Скорее речь может идти о научном поиске в решении этой сложной и многоплановой проблемы. В системе наук формируется особая отрасль — прогностика, или наука о прогнозе, которая обобщает опыт прогнозирования, накопленный в различных науках, разрабатывает общетеоретические вопросы и методы прогнозирования. В настоящее время в прогнозировании используется до сотни различных методов, которые объединяют в несколько групп. Однако отбор методов, проверку их применимости производят в зависимости от целей и объекта прогнозирования, поэтому прогноз — неотъемлемая часть той науки, в компетенции которой находится объект прогноза. По сути дела, прогнозирование само служит методом научных исследований, особенности применения которого в разных науках определяются спецификой самих наук. По мнению академика Б. М. Кедрова (1971), прогнозирование — характерная черта определенной стадии развития науки, которую он назвал прогнозной, а предшествуют ей еще две стадии — эмпирическая и теоретическая. Естественно, что различные науки достигают прогнозной стадии своего развития неодновременно. Для прогнозирования какого-либо явления необходимо знать его сущность и основные закономерности его развития, а также характер взаимосвязи прогнозируемого явления с другими и условия, при которых оно проявляется (Ю. Г. Саушкин, 1972). Следовательно, ! лишь при достаточно высоком уровне развития теории науки ее познавательные возможности расширяются до изучения явлений, которые еще не осуществились, но вполне могут произойти. Прогнозирование — одна из наиболее актуальных и сложных современных научных проблем. Ее разработка обеспечивается уровнем развития науки, а постановка прямо и непосредственно связана с запросами практики. Расширение и усложнение взаимодействия человеческого общества с окружающей средой поставили на пове-стку дня необходимость разработки географического прогноза. Принципы географического прогнозирования вытекают из теоретических представлений о функционировании, динамике и развитии ПТК, включая и закономерности их антропогенной транс- \ формации. Основанием географического прогноза служат перемены в состоянии тех факторов, от которых могут зависеть предстоящие I изменения ПТК. Среди этих факторов есть природные (неотектонические движения, изменения солнечной активности, саморазвитие ПТК и др.) и антропогенные (хозяйственное освоение территории, гидротехническое строительство, рекультивация земель и т.д.). В настоящее время антропогенное воздействие на природу по своей силе сопоставимо с самыми мощными природными факторами и может привести к необратимым изменениям природы. Предсказать направление и скорость изменения взаимоотношений природы, населения и хозяйства в их временном и территориальном аспекте — задача географического прогноза. Географический прогноз тесно связан двусторонними связями с социально-экономическим прогнозом. Из социально-экономического географический прогноз черпает прогноз потребностей, а поставляет ему прогноз возможностей. Прежде всего это касается ресурсного прогноза. Однако и в отношении размещения отраслей хозяйства, в определении допустимой технологии производства географический прогноз, раскрывающий возможные изменения природной среды, служит своеобразным территориальным лими-татором для социально-экономического прогноза. Сложность географического прогноза заключается в том, что он охватывает не только временные, но и территориальные изменения взаимоотношений между тремя очень сложными системами: природой, населением и хозяйством. Ю. Г. Саушкин (1976) отмечает, что главное в географическом прогнозе заключается «в научном предвидении видов и форм трансформации во времени пространственной неоднородности и пространственного сочетания и взаимодействия различных объектов (явлений, процессов) на земной поверхности». Географический прогноз подразделяется на физико-географический, демогеографический и экономико-географический. Физико-географический прогноз — это прогноз изменения окружающей природной среды, «это научная разработка представлений о природных географических системах будущего, об их коренных свойствах и разнообразных переменных состояниях, в том числе обусловленных непреднамеренными и непредусмотренными результатами деятельности человека» (В. Б. Сочава, 1974). В зависимости от полноты охвата компонентов географической оболочки физико-географический прогноз может быть частным или комплексным. Частные физико-географические прогнозы характеризуют пространственно-временные изменения одного какого-нибудь компонента или явления, либо группы тесно взаимосвязанных явлений. К частным прогнозам относятся прогноз изменения климата или стока, прогноз развития эрозионных процессов или засоления почв в связи с орошением, прогноз изменения растительного покрова или соотношения тепла и влаги и т.д. В климатологии и гидрологии прогнозные исследования проводятся давно, поэтому уже на-
Задача комплексного (интегрального, по В. Б. Сочаве) физико-географического прогнозирования — выявление тенденций изменения географической оболочки Земли и отдельных ПТК разного ранга под воздействием разнообразных природных и антропогенных факторов. Прогноз развития ПТК как целостных систем — наиболее сложный прогноз, поскольку он должен одновременно охватывать весь комплекс природных связей с учетом антропогенного воздействия на них. Любой комплексный физико-географический прогноз — это многофакторный и многокомпонентный, а значит, и вероятностный прогноз, ибо изменение одного из факторов влечет за собой и изменение взаимосвязей, что неизбежно отражается на характере, направлении и скорости изменения всего ПТК в целом. Таким образом, будущие изменения ПТК зависят от сочетания множества условий и факторов, поэтому комплексный физико-географический прогноз должен быть многовариантным. Многомерность прогноза изменения ПТК — весьма существенная трудность, которую необходимо преодолевать в процессе прогнозирования. Т. В. Звонкова (1972) указывает несколько путей преодоления барьера многомерности: разбиение целого на части, которые легко изучать и просчитывать; использование простых показателей, отражающих сумму важных прогнозных факторов; объединение нескольких показателей в один и т.д. Все эти пути находятся в пределах соотношения анализа и синтеза в прогнозных исследованиях, но, чтобы их использовать, нужно найти такие группы тесно взаимосвязанных факторов и явлений, которые либо подчинены сходным закономерностям развития в пространстве и во времени, либо представляют собой единую причинно обусловленную цепь, либо вызваны одной причиной и т.д. Только такие группы могут выступать в качестве самостоятельных единств, в качестве подсистем ПТК. В зависимости от характера воздействия антропогенного фактора все прогнозируемые изменения ПТК могут быть объединены в три типа (К.К.Марков и др., 1974). К первому типу относятся изменения природы, происходящие без всякого участия человека, под влиянием различных естественных факторов: неотектонических движений, гидроклиматических изменений, эволюционных изменений биогенных компонентов, как результат процесса саморазвития ПТК и т.д. Ко второму и третьему типам относятся изменения ПТК под влиянием антропогенного фактора. Они подразделяются на целенаправленные, т. е. такие, которые сознательно производятся или будут производиться человеком, и побочные, сопутствующие, непредвиденные изменения. Последний тип изменений вызывает особен- но большое беспокойство, так как они возникают в результате хозяйственной деятельности, прекратить которую человечество не в состоянии, и могут привести к крайне нежелательным последствиям. Эти три типа изменений происходят с неодинаковой скоростью, в различных направлениях и характеризуются разными закономерностями, поэтому и прогнозируются самостоятельно, однако с учетом их взаимосвязей, а затем интегрируются для установления общей тенденции изменения природы. Комплексный физико-географический прогноз, характеризующий пространственно-временные изменения ПТК, по территориальному охвату (масштабу) может быть глобальным, региональным и локальным, что соответствует трем уровням дифференциации географической оболочки (планетарному, региональному и топологическому). Глобальные прогнозы не привязаны к конкретной территории, а ориентированы на изучение временных эволюционных тенденций развития Земли как среды обитания. Региональные ориентированы не столько на временные, сколько на территориальные различия и решения. Объектами их являются обширные территории в границах каких-то запланированных мероприятий. Региональный прогноз разрабатывают с учетом сочетания на одной территории разных отраслей хозяйства (видов использования территории) и различных генетических типов ПТК. Он помогает выявлять устойчивые тенденции изменения природы с учетом ее ландшафтной структуры и хозяйственного использования ее ресурсов. Локальный прогноз направлен на изучение возможных изменений природной среды при непосредственном воздействии различных крупных хозяйственных объектов: города, горно-рудных разработок, гидротехнического сооружения и т.д. Что касается выбора временного отрезка для прогноза, то он определяется социальным заказом, возможностями географии (ее представлениями о допустимой точности определений) и продолжительностью явлений, лежащих в основе изменений ПТК. По срокам прогнозирования все прогнозы делятся на краткосрочные (5—10 лет), среднесрочные (15 — 30 лет) и долгосрочные (50 — 70 лет). Разделение географических прогнозов на обозримую перспективу по срокам прогнозирования на пять категорий, приведенное А. Г. Исаченко (1980, с. 233), на наш взгляд, недостаточно обосновано, так как не увязано со сроками социально-экономических прогнозов. Долгосрочные социально-экономические прогнозы составляют на 25 — 30 лет, этот же период служит расчетным сроком при разработке схем районных планировок, а географический долгосрочный прогноз должен служить предпроектной основой для их разработки, т. е. должен охватывать более длительный срок. Наиболее актуальным считается прогноз в пределах ближайших десятилетий. Что касается краткосрочных прогнозов (до 5 лет), то
Краткосрочный географический прогноз призван обеспечивать первую очередь схем и проектов районной планировки (5 —7 лет), j среднесрочный прогноз — вторую очередь (10—15 лет). Оба этих прогноза должны давать более широкую перспективу, позволяющую увидеть хотя бы первые результаты изменения природы под воздействием планируемых мероприятий, поэтому их предельные сроки должны быть более отдаленными, чем сроки социально-экономических прогнозов. Что касается сверхкраткосрочных прогнозов, то они обычно являются не интегральными, касающимися изменения всего комплекса в целом, а частными (прогноз урожайности, прогноз погоды и т.д.), либо предсказывают динамические сдвиги в современных процессах, но не дают собственно прогноза (предсказания) ожидаемых направленных изменений природных комплексов, их развития. В настоящее время наибольший опыт накоплен в разработке локальных прогнозов, связанных с проектированием крупных инженерно-технических сооружений. Менее разработаны вопросы регионального прогнозирования. Практически совсем не разработаны вопросы глобального комплексного физико-географического прогноза. Прогнозирование изменений ПТК обычно обусловлено собственно природными факторами (К. Н. Дьяконов, 1972), наиболее динамичные из которых — климатические. При долгосрочном прогнозировании оказывается необходимым учет и такого фактора, • как неотектонические движения. Антропогенные воздействия как бы накладываются на тенденции естественных изменений природы, усиливая или ослабляя, а иногда и существенно видоизменяя их, однако предвидеть возможные антропогенные воздействия в отдаленном будущем трудно, поскольку они будут зависеть от уровня развития техники и технологии производства, от использования тех или иных ресурсов и создания новых синтетических материалов. Поэтому долгосрочный географический прогноз должен быть особенно гибким и многовариантным, должен предусматривать возможную заменяемость факторов и корректироваться в зависимости от уровня развития производительных сил. Долгосрочный географический прогноз должен стать предпрогнозной основой для разработки долгосрочных социально-экономических прогнозов. При краткосрочном прогнозировании большинство естественных природных процессов не успевает за прогнозный срок внести в ПТК заметные изменения, поэтому ведущее значение приобретает прогноз изменений природы под воздействием антропогенного фактора. Именно он определяет грядущие изменения ПТК. Краткосрочный прогноз опирается на современный уровень раз- вития производительных сил, на современный уровень антропогенного воздействия, поэтому может быть достаточно жестким. Оптимальным при географическом прогнозировании представляется прогнозный срок 25 — 30 лет, так как он позволяет проследить тенденции естественного развития природы и использовать материалы долгосрочного социально-экономического прогноза для оценки влияния антропогенного фактора. Чтобы географический прогноз был достаточно достоверным и мог служить основой для управления изменениями окружающей среды, долгосрочного планирования и принятия административных решений, он должен опираться на общие принципы прогнозирования, разработанные наукой: исторический, сравнительный, эволюционный и др. Прогноз должен базироваться на устойчивых взаимосвязях между явлениями природы и взаимодействиях природы и общества, быть гибким, многовариантным, а сам процесс прогнозирования — непрерывным. Работа по комплексному физико-географическому прогнозированию начинается с детального изучения существующих на изучаемой территории ПТК, их современных свойств, устойчивых связей и степени антропогенного изменения. Особенно большое значение имеет изучение пространственной структуры ПТК, которая служит своеобразным территориальным лимитатором прогнозируемых изменений. Необходимо также собрать материалы по прогнозируемым изменениям в составе населения и структуре хозяйства изучаемой территории для оценки влияния антропогенных факторов в будущем. Изменение природы под воздействием естественных факторов прогнозируется на основе анализа процесса развития ПТК. Анализ прошлого, т.е. палеогеографический анализ, позволяет установить устойчивые тенденции развития ПТК и дает возможность прогнозировать эти изменения на будущее. Такой прогноз в значительной мере основан на сравнительно-географическом анализе. Сравнивая сходные ПТК, находящиеся на разных ступенях развития, мы устанавливаем природные тенденции их развития. Сравнение комплексов, сходных по природным условиям, но в разной степени измененных человеком, дает возможность судить о направлении, характере, степени и скорости антропогенных изменений, устанавливать тенденции развития ПТК под влиянием антропогенного фактора. Рассматривая будущее как продолжение прошлого и настоящего, установленные тенденции развития можно распространить на прогнозируемый период. Для этого используются методы экстраполяции. Правда, используя метод исторических экстраполяции при прогнозировании, нужно постоянно помнить о значительном ускорении природных процессов под влиянием антропогенного фактора и о качественных изменениях природной среды в результате взаимодействия природы и общества.
При разработке географического прогноза для обоснования раз-1 личных инженерно-технических проектов используется метод «пе-Ш ребора вариантов», позволяющий путем анализа и просчета раз-Я личных вариантов воздействия на природу выбрать из них оптиШ мальный. Одним из популярных и довольно простых методов прогнози-1 рования является метод экспертных оценок. Специфика его приме-1 нения в географическом прогнозировании заключается в подборе экспертов, которые должны быть не только специалистами своего! дела и иметь большой опыт, но и хорошо знать региональные осо- | бенности той территории, для которой разрабатывается прогноз. I Таким образом, в процессе географического прогнозирования а широко используются методы географических исследований, а из Я обширного арсенала методов прогностики применяются в настоя- I щее время лишь те, которые по своему существу наиболее близки 1 методам исследования самой географической науки. Прежде всего щ это касается сравнительного метода, который в литературе по прогностике получил название компаративного. В физико-географическом прогнозировании этот метод особенно важен, так как он позволяет использовать территориальные и исторические аналогии. К сравнительному методу тесно примыкают методы экстраполяции, позволяющие распространять выводы, полученные при изучении нескольких элементов множества, на все множество. Географы в своих исследованиях издавна применяли территориальные экстраполяции, а при прогнозировании центр тяжести переносится на исторические экстраполяции, экстраполяции во времени. Развитие методов моделирования в комплексных физико-геогра- '• фических исследованиях сопровождается одновременным внедрением их в географическое прогнозирование. Прежде всего это касается логического и математического моделирования. Постепенное совершенствование методов научного прогнозирования и накопление опыта по разработке разнообразных географических прогнозов позволят создать достаточно надежную и хорошо отработанную методику комплексного физико-географического прогнозирования — составной части общего географического прогноза, потребность в котором возрастает по мере дальней-шего усложнения взаимодействия природы и общества. ЗАКЛЮЧЕНИЕ Основная задача данного пособия — познакомить с методами комплексных физико-географических исследований, в первую очередь полевых, поскольку поле для географа-ландшафтоведа — это основная лаборатория для получения новых научных данных. Не имея возможности из-за ограниченного объема пособия рассказать обо всем, мы остановились на главном. Из традиционных методов выбрали сравнительно-географический и картографический, реализуемые в виде полевых описаний и карт ПТК, отражающих их пространственное распространение и структуру, без чего невозможны сколько-нибудь серьезные дальнейшие исследования природных геосистем. Из новых методов рассмотрены ландшафтно-геохимический и ландшафтно-геофизический, позволяющие раскрыть внутреннюю сущность процессов, определяющих функционирование и динамику ПТК. Из новейших методов коснулись лишь компьютерных. Однако компьютерная техника развивается столь стремительно, что сказанное будет очень скоро (и постоянно) требовать обновления. Впрочем, в какой-то мере это относится ко всем методам. В третьем тысячелетии перед географической наукой встали новые задачи, связанные с глобальными экологическими проблемами и разработкой проектов устойчивого развития на всех уровнях организации общества. В связи с этим сейчас, как никогда ранее, остро ощущается необходимость интеграции науки. А. Г. Исаченко на X съезде Русского географического общества (1995) говорил о большой разобщенности в системе отраслей физической географии, отмечая вместе с тем, что связи физической географии с естественными науками все же теснее, чем со своей «сестрой» — экономической географией. И этот разрыв опасен. Нужны совместные комплексные работы — «двуединая» география должна быть единой. В настоящее время усилились тенденции экологизации и гуманизации географии. Несомненно, что будут изменяться и методы географических, в том числе комплексных физико-географических исследований. Развитие географии шло от «арифметики» (сугубой конкретики) к «алгебре» (классификация, типизация). Долго длилась экспедиционная эпоха, для которой хватало неисследованных земель. 1 1 Жучком 305
Мы видим только то, что знаем. Человек при восприятии стремится к «разложению» сложных конфигураций на более простые и к постоянному синтезу. Восприятие есть воссоздание реальности (Г.Хакен, М.Хакен-Крель, 2002). Из этого следует, что научить видеть, значит, научить воссоздавать образы из деталей. Психофизиологи установили, что восприятие, во-первых, подчиняется | формальным законам, общим для всех систем (кибернетическим), во-вторых, постоянно самоорганизуется. Чтобы «переделать образ», например, при обучении, нужно передать умение видеть детали (анализировать) и умение «собирать» из этих деталей целое. Одно время характеристика террито-рии давалась методом покомпонентного анализа. Впоследствии этот метод так долго порицали, противопоставляя комплексному, ландшафтному видению территории (которое, собственно, и заключается в способности воссоздать целое из частей), что он почти ушел из школьных учебников и уходит из вузовских. Наступила другая '.] крайность. Но ведь это двуединый процесс: без анализа не может быть синтеза. Надеемся, что данное пособие поможет в этом, т. е. поможет «видеть». Осваивать или разрабатывать новое, осуществлять совместные работы с представителями родственных или отдаленных научных направлений можно только хорошо усвоив азы собственной дисциплины, наращивая на этом фундаменте все, что потребуется для достижения поставленной цели. В заключение еще раз о полевых исследованиях. Они ничем не заменимы. Сколько бы мы ни читали литературы, сколько бы ни , изучали самых прекрасных карт, аэрофото- и космоснимков, фотографий, мы не получим полного, всестороннего географического представления об объекте исследования. Только благодаря полевым работам и последующей тщательной обработке материалов (разумеется, с использованием опыта предшественников) мы до- бьемся того, что наши модели (графические, текстовые, мысленные и прочие) будут более или менее адекватны географической действительности. Поле формирует начинающего исследователя. От того, в какой ландшафтной обстановке будущий ученый начинал свои полевые исследования или в каких ландшафтах он большей частью работал, в большой степени зависит характер его научного мышления, теоретических взглядов, концептуальных построений. Вот почему, отдавая преимущественное внимание изучению какого-либо региона, всегда полезно поработать и в других. Это расширяет географический кругозор и позволяет освободиться от ограниченных (иногда не совсем правильных) представлений. Авторы надеются, что настоящее пособие будет полезным молодым географам, собирающимся заниматься физико-географическими исследованиями.
Основная литература Беручашвили Н.Л., Жучкова В. К. Методы комплексных физико-географических исследований. — М.: Изд-во Московского ун-та, 1997. Дьяконов К.Н., Касимов Н.С., Тикунов B.C. Современные методы географических исследований. — М.: Просвещение, 1996. Жучкова В.К. Организация и методы комплексных физико-географических исследований. — М.: Изд-во Московского ун-та, 1977. Жучкова В.К., Раковская Э.М. Природная среда — методы исследования. — М.: Мысль, 1982. Исаченко А. Г. Методы прикладных ландшафтных исследований. — Л.: Наука, 1980. Макунина Г.С. Методика полевых физико-географических исследований. Структура и динамика ландшафта. — М.: Изд-во Московского ун-та, 1987. Дополнительная литература Авессаломова И. А. Геохимические показатели при изучении ландшафтов. — М.: Изд-во Московского ун-та, 1987. Альбом образцов топографического дешифрирования аэроснимков // Тр. ЦНИИГАиК. - 1967. - Вып. 180. Альбом дешифрирования многозональных аэрокосмических снимков. Методика и результаты. — Берлин: Академи-форлаг. — М.: Наука, 1982. Арманд Д.Л. Наука о ландшафте. — М.: Мысль, 1975. Беручашвили Н.Л. Методикаландшафтно-географическихисследований и картографирование состояний природно-территориальных комплексов. — Тбилиси: Изд-во Тбилисского ун-та, 1983. В и д и н а А. А. Методические вопросы полевого крупномасштабного ландшафтного картографирования // Ландшафтоведение. — М.: Изд-во АН СССР, 1963. - С. 102-127. Видина А.А., Джерпетов И.В., Низовцев В.А. Факторы ландшафтной дифференциации и ландшафты Сатинского учебного полигона // Комплексная географическая практика в Подмосковье. — М.: Изд-во Московского ун-та, 1980. — С. 153 — 202. Викторов А. С. Рисунок ландшафта. — М.: Мысль,1986. Викторов СВ. Использование индикационных географических ис-следованийв инженерной геологии. — М.: Недра, 1966. Викторов СВ., Илюшина М.Т., Кузьмина И.В. Эколого-генетическиеряды растительных сообществ как индикаторы природных процессов // Экология. — 1970. — № 6. Владимиров В.В., Фомин И. А. Основы районной планировки.— М.: Высшая школа, 1995. Волобуев В.Р. Введение в энергетику почвообразования. — М.: Наука, 1974. Географическое обоснование экологических экспертиз. — М.: Изд-во Московского ун-та, 1985. Геоэкологические принципы проектирования природно-технических геосистем. — М.: Институт географии АН СССР, 1987. Глобальные проблемы современности и комплексное землеведение. — Л.: Изд-во АН СССР, 1988. Гунин П.Д., Востокова Е.А. Ландшафтная экология. — М.: Био- информсервис, 2000. Дроздов К.А. Крупномасштабные исследования равнинных ландшафтов. — Воронеж: Изд-во Воронежского ун-та, 1989. Дьяконов К.Н. Влияние крупных равнинных водохранилищ на леса прибрежной зоны. — Л.: Гидрометиздат, 1975. Живчин А.Н., Соколов B.C. Дешифрирование аэрофотографических изображений. — М.: Недра, 1980. Исаченко А.Г. Ландшафтоведение и физико-географическое районирование. — М.: Высшая школа, 1991. Книжников Ю.Ф., Кравцова В.И. Аэрокосмические исследования динамики географических явлений. — М.: Изд-во Московского ун-та, 1991. Книжников Ю.Ф. Аэрокосмическое зондирование. Методология, принципы, проблемы. — М.: Изд-во Московского ун-та, 1997. Крауклис А.А. Проблемы экспериментального ландшафтоведе-ния. — Новосибирск: Наука, 1979. Ландшафтное проектирование: принципы, методы, европейский и российский опыт. — Иркутск: Государственный центр экологических программ, 2002. Мамай И.И. Динамика ландшафтов. — М.: Изд-во Московского ун-та, 1992. Мамай И.И. О расчете стоимости ландшафтной съемки // География и природные ресурсы. — 1997. — № 4. — С. 126—132. Методы дендрохронологии. Часть I. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации / С. Г. Шиятов, Е.А.Ваганов, А. В. Кирдянов и др. — Красноярск: Краен. ГУ, 2000. Николаев В.А. Классификация и мелкомасштабное картографирование ландшафтов. — М.: Изд-во Московского ун-та, 1978. Николаев В.А. Проблемы регионального ландшафтоведения. — М.: Изд-во Московского ун-та, 1979. Николаев В.А. Ландшафтоведение. — М.: Изд-во Московского ун-та, 2000. О дум Ю. Основы конструктивной географии. — М.: Мир, 1975. О дум Ю. Основы конструктивной географии. — М.: Просвещение, 1986. О дум Ю. Основы эколого-географической экспертизы / Под ред. К.Н.Дьяконова, Т.В.Звонковой. — М.: Изд-во Московского ун-та, 1992. Пайтген Х.О, Рихтер П.Х. Красота фракталов. Образы комплексных динамических систем. — М.: Мир, 1993.
Преображенский B.C., Александрова Т.Д., Куприяно- I в а Т.П. Основы ландшафтного анализа. — М.: Наука, 1988. Рекомендации по охране окружающей среды в районной планировке. — Я М.: Стройиздат, 1986. Руководство по ландшафтному проектированию. — М.: Государствен-ныйцентр экологических программ, 2000. — Т. I; 2001. — Т. II. Солнцев Н. А. Учение о ландшафте: избранные труды. — М.: Изд-во } Московского ун-та, 2001. Снытко В. А. Геохимические исследования метаболизма вещества в , геосистемах. — Новосибирск: Наука, 1978. Сочава В.Б. Введение в учение о геосистемах. — Новосибирск: Наука, 1978. X а н в ел Дж., Н ь ю с о н М. Методы географических исследований / Пер. с англ. — М., 1977. — Вып. 2. Физическая география. Чалая И.П., Куконенко М.В., Черкасова Л.М. Исследование природных условий для архитектурно-планировочного проектирования. — М.: Стройиздат, 1973. ПРИЛОЖЕНИЯ Вводные замечания В «Приложениях» дано краткое изложение компьютерных методов и описания электронных приборов, используемых в физико-географических исследованиях (приложение 1); помещено несколько фрагментов разного масштаба карт физико-географического районирования и ландшафтных с легендами, в том числе с табличными (приложения 2 — 6). На этих фрагментах мы пытались показать, как масштаб картографирования влияет на содержание карт и, в первую очередь, на ранг изображаемых на картах ПТК. Впрочем, о картах физико-географического районирования можно сказать, что в отношении масштаба они практически «безразмерны», так как изображают крупные ПТК (выше таксономического ранга ландшафтов) и могут быть представлены и вполне «читаемы» даже при очень сильном уменьшении. Так, на рис. 1 приложения 2 изображен фрагмент карты «Физико-географическое районирование СССР» (европейская часть), где выделены физико-географические страны, зональные области и провинции. Фрагмент по сравнению с оригиналом уменьшен здесь более чем в два раза и мог бы быть уменьшен еще больше. Похожая ситуация и с рис. 2 приложения 3. Не случайно изображенная карта названа «Карта ландшафтов Брянской области», а не «Ландшафтная карта...», потому что оригиналы этой карты созданы в масштабах 1: 500 000 и крупнее без расшифровки морфологической структуры ландшафтов. Эта карта могла бы быть тоже названа картой физико-географического районирования. Два следующих фрагмента (рис. 3 приложения 4 и рис. 4 приложения 5) типичные ландшафтные карты масштабов 1:200 000 и 1:25 000, где изображена морфологическая структура ландшафтов, разумеется, с разной степенью подробности. К обеим названным картам, а также к «Карте ландшафтов Брянской области» приложены фрагменты легенд, показывающих компонентную структуру ПТК, а также некоторые другие их характеристики. В приложении 6 (рис. 5 и 6) даны образцы фрагментов карт масштаба 1 :200 000 территории Воронежской области, существенно отличающиеся от приведенных выше (см. сопровождающую текстовую характеристику). Последние три приложения — это образец бланка описания фации (приложение 7), «Эдафическая сетка» (по П. С. Погребняку) с некоторыми изменениями, внесенными А.А.Видиной (приложение 9) и «Условные обозначения для полевого крупномасштабного ландшафтного картографирования» (по А.А.Видиной, приложение 8).
1. Компьютерные методы и электронные приборы 1.1. Компьютерные методы Как и в других дисциплинах, применение компьютеров в географии облегчает расчетные, статистические работы, построение диаграмм и графиков, обработку текста, графических изображений, создание баз данных, задачи математического моделирования. Полезны электронные справочники. Особый интерес для географов представляют ГИС-технологии (куда фактически входит все вышеперечисленное), а также GPS-навига-ция, объединение ГИС с Интернет и сотовыми телефонами. Новые информационные технологии уже значительно поменяли стиль и методы географических исследований, но основное их внедрение еще только начинается. Можно выделить два аспекта влияния кибернетики: первый— технический и второй — идейный (концептуальный). Технический аспект.Как и в других дисциплинах, в физико-географи- I ческих исследованиях велика техническая роль компьютеров. Во-первых, в работе географов значительное место занимают редактирование и печать текстов; чрезвычайно важна возможность обработки изображений, фотографий. Во-вторых, особую роль играют методы определения и привязки местоположения объектов на поверхности Земли (GPS-навигация). В-третьих, широки возможности создания автоматизированных систем — анализаторов геохимических и геофизических параметров для стационарных, полустационарных и даже экспедиционных мобильных станций (датчики под управлением компьютера). Концептуальное влияние.Идейное влияние кибернетики как учения о системах существенно затрагивает саму методологию географии. Долгое время географы объясняли сущность системного подхода свойством эмерджентно-сти (целое есть нечто большее, чем простая сумма частей) и зачастую довольствовались интуитивным пониманием системы, как совокупности элементов с более тесными внутренними связями. Но этим не ограничивается специфика системного подхода. Утверждение «все связано со всем» так же неконструктивно, как и «ничто ни с чем не связано»: они оба не дают нам знания, как следует действовать. Весь вопрос в том, как именно связано. Основное методическое преимущество системных исследований — это четкое осознание существования природной «автоматики», выявление природных «программ»: обнаружение системных переключателей, работы обратной связи, замыкающей причинно-следственную цепочку в цикл (см. раздел 2.3); определение их роли в саморегуляции геосистем; возможности точечно адресного антропогенного воздействия на системные регуляторы при минимизации сил и средств; более четкая оценка последствий этого. Хотя в физической географии (и в ландшафтоведении особенно) всегда уделялось внимание учету соседства, функционирования геосистем, связи компонентов, тем не менее многое делалось на интуитивном или на предметном уровне (на конкретных географических примерах). Нужен пересмотр (особенно в связи с открытием явления фрактальности) понимания системных законов. В технических, экономических и социальных науках находится все больше доказательств значительных аналогий системного устройства природы и общества. Природа — не автоматика, но факт, что многие удивительные природные явления объясняются чистым автоматизмом. После господства исключительно вещественно-энергетического подхода трудно дается новая парадигма — понимание того, что передача информации кардинально отличается от передачи вещества и энергии прежде всего своей нелинейностью: воздействие бесконечно малого количества вещества и энергии на «узловые точки» (системные регуляторы) может вызвать бесконечно большие последствия. GPS-навигация.Определение и «привязка» местоположения объектов (позиционирование) — важная часть любого географического исследования. Долгое время она выполнялась способами наземной триангуляции, потом добавились методы дешифрирования аэрофотоматериалов, в настоящее время используют геостационарные (находящиеся на постоянных орбитах) спутники Земли. Наиболее популярна и общедоступна американская G. P. S. — Global Positioning System (система глобального позиционирования). Принцип позиционирования (определения позиции в пространстве) основан на определении расстояния до объекта. Расстояние можно вычислить, умножив время прохождения сигнала на его скорость (скорость света). Зная лишь расстояние, т.е. радиус сферы вокруг объекта, еще нельзя узнать его местоположение. Но если мы знаем радиусы двух сфер от двух объектов, то можем найти их пересечение (если они пересекаются, то областью их пересечения будет окружность). Зная расстояние до третьего объекта, получим более точный результат и т.д. Для непрерывного слежения нужно все время решать систему уравнений. Ясно, что все это стало возможным лишь благодаря быстродействию вычислительных компьютерных систем и точности определения времени. Достаточная точность обеспечивается только при применении на спутниках атомных часов и одновременного функционирования большого количества спутников. Стандартные GPS-приемники могут принимать сигналы от 12 спутников сразу. Высокая точность (необходимая в первую очередь для военных целей) получается при наличии на геостационарных орбитах около трех десятков спутников, причем определяемый объект должен «видеть» одновременно хотя бы четыре из них, поскольку это диктуют условия распространения коротких волн (1200—1500 МГц). Такие ультракоротковолновые сигналы Распространяются аналогично световым волнам, поэтому на их пути не Должно быть препятствий. «Тень» от высоких домов, сооружений, даже от Деревьев в лесу, снижает точность. Могут быть помехи «переотражения» °т указанных объектов, как от зеркал. Помехи могут создавать также атмосферные условия: воздушные массы разной плотности и состава могут действовать как линзы; плотность Ионосферы, стратосферы, атмосферы хотя и незначительно, но увеличивает время прохождения сигнала. Как и при любом виде навигации, точность ухудшается, если «видимые» спутники находятся в одном направ-
GPS-приемники применяют как отдельно (для контроля за прохождением маршрута), так и в комплекте с ноутбуками или карманными компьютерами, что позволяет сразу наносить маршрут и положение точек наблюдения на электронную карту. Обычно, определяя положение на местности, можно рассчитывать на точность около 100 м; специальные методы с участием наземных станций могут повысить ее примерно в десять раз. Система применяется в спасательных службах, навигации (морской, авиационной), в автомобильном и пешем туризме, устанавливается на автомобилях как противоугонная, облегчает работу с картами во многих отраслях науки и практики. Проблемы стоимости и корректного использования методов.Компьютерные технологии очень облегчают работу, но и создают особые проблемы — требуют больших материальных затрат на оборудование и обучение (программы ГИС стоят несколько тысяч долларов). Кроме того, все это должно периодически обновляться, так как быстро устаревает. Немногие исследователи пишут свои собственные программы, которые лучше приспособлены именно для данной конкретной задачи. Программы известных компаний, как правило, наиболее универсальны, т.е. подходят большим группам пользователей. Они предоставляют все больше поистине необыкновенных возможностей, но являются «закрытыми» для рядового пользователя, который не может и (или) не хочет знать, как они работают. «Закрытая» программа — полностью «готовый» продукт, созданный на продажу, с защитой от вскрытия. Не имея возможности соревноваться в одиночку с огромными корпорациями, создающими программные продукты, пользователь вынужден слепо доверять им. Если при работе с текстом или изображениями контролировать результат довольно легко, то пакеты программ статистики и ГИС это не всегда позволяют. Возникает соблазн передоверить компьютеру ряд исследовательских функций. Отсюда проблема корректного использования компьютерных методов, для чего их надо хорошо знать. Например, статистические пакеты типа STATISTICA. Они сделаны для больших выборок (например, больших массивов данных американских страховых компаний). Гораздо менее известны отечественные программы, позволяющие применять алгоритмы для малых выборок, а малые выборки нередко встречается в географии из-за трудностей типизации, классификации (из-за природного разнообразия). Связи между элементами системы (процессами, компонентами и т.д.) обычно ищут путем вычисления коэффициентов корреляции или корреляционных функций. Это сравнение двух (или нескольких) процессов во времени, или сравнение одновременного изменения каких-либо параметров в пространстве. Если эти изменения в какой-то степени совпадают, то делается вывод об их связи. Однако наличие или отстутствие корреляции — только повод для размышления, сигнал к дальнейшему анализу. Это свидетельство того, что связь может быть. Бывают совпадения совершенно разных, независимых процессов со своей внутренней автоматикой, а может быть и «разнобой» в работе элементов одной и той же системы. Наоборот, не найдя корреляции в процессах, тем не менее нельзя делать окончательный вывод об отсутствии целостности геосистемы. Полученные данные требуют более содержательного качественного анализа, с использованием всего географического интеллектуального потенциала исследователя. Метод ошибочен в том случае, когда результат вычисления корреляции принимается за итоговый, тогда как он может быть лишь началом исследования. В то же время нельзя вовсе отказываться от анализа периодических процессов — они пронизывают всю органическую жизнь и повсеместно встречаются в неживой природе. Это очень трудоемкие операции, которые стали более или менее доступны лишь с появлением компьютеров. Работа с изображениями.Для этого существует множество разнообразных программ, в том числе и бесплатных. Графические программы делятся на растровые и векторные. Растровые — типа известной Photoshop. При большом увеличении можно увидеть, что изображение представлено отдельными мелкими квадратиками (пикселлами). Чем лучше качество изображения, тем более мелкими должны быть пикселлы, и тем их больше, а значит, тем больше загружена память. Толщину готовой линии при этом способе трудно изменить, линию трудно сгладить. В векторных программах типа Corel DRAW контуры представлены в виде отрезков линий определенной кривизны. Эти отрезки записываются в аналитическом виде, как графики функций, что позволяет экономить объем записываемой информации и легко менять масштаб, толщину линий, их сглаживание. Оба способа (и растровый и векторный) имеют свои преимущества. Существуют также программы векторизации (перевода растровых изображений в векторные) и, наоборот, растрирования. Поскольку эти программы могут работать лишь как приложения к операционной системе Microsoft Windows, сначала надо купить ее лицензионную копию, а потом сами программы. Существует известная проблема противостояния сторонников платных программ, ярким примером которых является «империя» корпорации Microsoft, чьи программы лидируют по широте распространения и по стоимости, и сторонников бесплатности компьютерного обеспечения. В последние годы среди исследователей повысился интерес к использованию другой операционной системы — UNIX, или LINUX, которая «открыта», т.е. бесплатна, и позволяет пользователю лучше понимать, как она работает, но набор графических программ для нее меньше, и они не столь совершенны. Некоторые из них небесплатны, и по мере их совершенствования возрастает стоимость. ГИС также стоят очень дорого, поэтому рационально корпоративное (совместное) пользование. Ряд таких программ поставлялся с большими скидками для высших учебных заведений. ГИС-технологии. ГИС — это геоинформационные системы. Под словом ГИС понимают и программы для создания этих систем, и даже всю
Особую ценность ГИС составляет их связь с собственными базами данных, позволяющая легко получить необходимую справку о каждом объекте карты. Аналитические блоки ГИС автоматизируют наиболее часто востре-буемые процедуры, например определение расстояния от одного объекта до другого. Чтобы создать ГИС для определенного региона, объекта, необходимо 1 имеющиеся бумажные карты отсканировать (с помощью сканера перевести в электронное растровое изображение) и потом хранить в этой же « растровой форме, или «оцифровать», т.е. с помощью специальных программ, входящих, например, в комплект MAPINFO или Arc View (или I отдельных программ), перевести необходимые контуры в векторную фор-му, ГИС работают и с растровыми, и с векторными изображениями бла-годарясвоим встроенным графическим пакетам, могут «понимать» до- 1 вольно широкий ассортимент электронных графических изображений, на- ] пример в форматах *.tif, *.bmp, и т.д. Кроме того, условные обозначения, легенду к карте, тексты, фото- j графии, схемы, АФС и другие сведения надо занести в базу данных, связанную с электронной картой. Графические файлы и файлы базы данных разные, но связаны друг с другом. Изменения, внесенные в один файл, тем или иным способом сказываются на всех с ним связанных, тогда как ; файл вне ГИС-системы — это просто отдельная картинка или таблица, или текст. Есть проблемы совместимости разных ГИС. Мешает не только техническая несовместимость разных файлов, разных наборов данных. Как и в человеческом сознании, объективная географическая реальность может быть изображена в ГИС самыми разнообразными способами, а если два способа несовместимы, то никакая программа не сможет их согласовать. Из этого следует важный методический вывод: предстоит выработка стандартных метаописаний для их взаимной совместимости, что опять-таки связано с конфликтом индивидуальности геосистем и необходимости их типизации. Начинать работу следует с «привязки» карты к системе координат — без этого не удастся воспользоваться всеми преимуществами ГИС. Отличие ГИС от других информационных систем как раз в том, что вся информация специальным образом пространственно привязана. Каждая карта должна создаваться в определенной геодезической системе координат, в принятойкартографической проекции, в заданной системе размерностей с использованием теории, методов и технологий соответствующих научных дисциплин. Отсюда ясно, что следует знать и о возможности искажений, об их допустимых значениях. Примеры программ.Есть известные компании — производители программного обеспечения для ГИС, например ESRI. Это частная фирма, название которой расшифровывается как Институт Исследования Систем Окружающей Среды (Environmental System Research Institute).
![]() |