Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



IV. РЕЦЕПТ ПРИГОТОВЛЕНИЯ ГОРЯЧЕЙ ВСЕЛЕННОЙ



 

Наблюдения, обсуждавшиеся в двух предыдущих главах, показали, что Вселенная расширяется и что она заполнена универсальным фоном излучения, который имеет сейчас температуру З К. Это излучение представляется пережитком того времени, когда Вселенная была непрозрачной и примерно в 1 000 раз меньше и горячее, чем в настоящее время. (Как и всегда, когда мы говорим, что Вселенная была в 1 000 раз меньше, чем сейчас, мы просто имеем в виду, что расстояние между любой данной парой типичных галактик было тогда в 1 000 раз меньше теперешнего.) В качестве заключительного этапа подготовки к нашему расчету первых трех минут мы должны заглянуть назад в еще более ранние моменты времени, когда Вселенная была еще меньше и горячее, используя для изучения господствовавших тогда физических условий не оптические или радиотелескопы, а теоретические методы исследования.

В конце главы III мы отмечали, что когда Вселенная была в 1 000 раз меньше, чем в настоящее время, и содержавшееся в ней вещество было на грани того, чтобы стать прозрачным для излучения, Вселенная перешла от эры преобладания излучения к теперешней эре преобладания вещества. Во время эры преобладания излучения было не только то же самое огромное количество фотонов на каждую ядерную частицу, что и сейчас, но энергия отдельных фотонов была достаточно велика, так что большая часть энергии Вселенной была в форме излучения, а не частиц. (Напомним, что фотоны — это безмассовые частицы, или кванты, из которых, согласно квантовой теории, состоит свет.) Следовательно, с достаточно хорошим приближением Вселенную в течение этой эры можно рассматривать так, будто она заполнена только одним излучением и не содержит вовсе никакого вещества.

Этот вывод надо сопроводить одним важным уточнением. Мы увидим в этой главе, что эра чистого излучения началась на самом деле только в конце первых нескольких минут, когда температура упала ниже нескольких миллиардов градусов Кельвина. До этого момента вещество было важно, но вещество, сильно отличавшееся от того, из которого состоит наша нынешняя Вселенная. Однако прежде, чем мы заглянем столь далеко назад, кратко рассмотрим собственно эру излучения, от конца первых нескольких минут до момента на несколько сот тысяч лет позднее, когда вещество стало вновь более важным, чем излучение.

Все, что нам нужно для того, чтобы проследить историю Вселенной в течение этой эры, это знать, насколько все было горячим в любой данный момент времени. Иными словами, как температура связана с размером Вселенной в процессе ее расширения?

Было бы легко ответить на этот вопрос, если бы излучение можно было рассматривать расширяющимся свободно. Длина волны каждого фотона просто растягивалась бы (благодаря красному смещению) пропорционально размеру Вселенной в процессе ее расширения. Кроме того, мы видели в предыдущей главе, что средняя длина волны излучения черного тела обратно пропорциональна температуре. Следовательно, температура должна была уменьшаться обратно пропорционально размеру Вселенной, так же, как это происходит сейчас.

К счастью для теоретика-космолога, это же простое соотношение выполняется даже тогда, когда мы принимаем во внимание, что излучение в действительности не расширялось свободно, — быстрые столкновения фотонов с относительно небольшим числом электронов и ядерных частиц делали содержимое Вселенной непрозрачным в течение эры преобладания излучения. Пока фотон был в свободном полете между столкновениями, его длина волны должна была увеличиваться пропорционально размеру Вселенной, а на каждую частицу приходилось так много фотонов, что столкновения просто вынуждали температуру вещества следовать температуре излучения, но не наоборот. Таким образом, когда Вселенная была, например, в десять тысяч раз меньше, чем сейчас, температура должна была быть пропорционально выше теперешней, т. е. около 30 000 К. Вот все, что можно сказать об эре излучения.

В конце концов, по мере того, как мы все дальше и дальше заглядываем в глубь истории Вселенной, мы приходим к моменту времени, когда температура была столь высока, что столкновения фотонов друг с другом могли порождать частицы вещества из чистой энергии излучения. Мы собираемся показать, что образованные таким образом частицы были так же важны для определения скорости различных ядерных реакций и скорости расширения Вселенной в первые несколько минут, как и само излучение. Поэтому, чтобы проследить за ходом событий в действительно ранние моменты времени, нам потребуется знать, сколь горяча должна быть Вселенная, чтобы из энергии излучения образовалось большое количество материальных частиц, и сколько частиц так образовалось.

Процесс, в котором вещество образуется из излучения, можно легче всего понять, используя квантовую картину света. Два кванта излучения, или фотона, могут столкнуться и исчезнуть, причем вся их энергия и импульс уйдут на образование двух или более материальных частиц. (В действительности этот процесс косвенным образом наблюдается в современных лабораториях ядерной физики высоких энергий.) Однако эйнштейновская специальная теория относительности утверждает, что даже в покое материальная частица должна иметь определенную «энергию покоя», даваемую знаменитой формулой Е = mс2 . (Здесь с — скорость света. Это есть источник энергии, высвобождаемой в ядерных реакциях, в которых доля массы атомного ядра уничтожается.) Отсюда, для того, чтобы два фотона образовали две материальные частицы массы m при лобовом столкновении, энергия каждого фотона должна быть по меньшей мере равна энергии покоя mс2 каждой частицы. Реакция будет происходить и тогда, когда энергия отдельных фотонов будет больше mс2 ; избыток энергии просто уйдет на то, чтобы придать материальным частицам большую скорость. Однако частицы массой m не могут образоваться в столкновениях двух фотонов, если энергия фотонов меньше mс2 , потому что в этом случае энергии не хватает даже на то, чтобы образовать массу этих частиц.

Очевидно, чтобы судить об эффективности излучения для образования материальных частиц, нам надо знать характерную энергию отдельных фотонов в поле излучения. Это может быть установлено с достаточной для наших теперешних целей точностью с помощью простого мнемонического правила: чтобы найти характерную энергию фотона, просто умножьте температуру излучения на фундаментальную постоянную статистической механики, известную как постоянная Больцмана. (Людвиг Больцман, наряду с американцем Уиллардом Гиббсом, был основателем современной статистической механики. Говорят, что самоубийство Больцмана в 1906 году, по крайней мере, отчасти было вызвано философской оппозицией его работе, но вся эта полемика уже давно прекратилась.) Значение постоянной Больцмана равно 0,00008617 эВ на градус Кельвина. Например, при температуре 3000 К, когда содержимое Вселенной только-только стало прозрачным, характерная энергия каждого фотона примерно равнялась 3000 К, умноженным на постоянную Больцмана, или 0,26 эВ. (Напомним, что электронвольт равен энергии одного электрона, прошедшим разность потенциалов один вольт. Типичные энергии химических реакций — порядка электронвольта на атом, именно поэтому излучение при температурах выше 3000 К достаточно горячо, чтобы удержать значительную долю электронов от включения в состав атомов.)

Для того, чтобы образовать материальные частицы массой m в столкновениях фотонов, характерная энергия фотонов, как мы видели, должна быть по меньшей мере равна энергии mс2 частиц в покое. Так как характерная энергия фотонов равна температуре, умноженной на больцмановскую постоянную, то отсюда вытекает, что температура излучения должна быть по меньшей мере порядка энергии покоя mс2 , деленной на больцмановскую постоянную. Это значит, что для каждого типа материальных частиц имеется «пороговая температура», равная энергии покоя mс2 , деленной на постоянную Больцмана, которая должна быть достигнута прежде, чем частицы данного типа начнут рождаться из энергии излучения.

Например, легчайшие из известных материальных частиц — электрон е- и позитрон е+ . Позитрон есть античастица по отношению к электрону; это значит, что он имеет противоположный электрический заряд (положительный вместо отрицательного), но те же массу и спин. Когда позитрон сталкивается с электроном, заряды могут уничтожиться, причем энергия массы двух частиц проявится как чистое излучение. Именно поэтому, конечно, позитроны столь редки в обычной жизни — просто они очень мало живут перед тем, как найти электрон и аннигилировать. (Позитроны были открыты в космических лучах в 1932 году.) Процесс аннигиляции может идти и в обратную сторону — два фотона с достаточной энергией могут столкнуться и образовать электрон-позитронную пару, причем энергия фотонов превратится в массу электрона и позитрона.

Для того, чтобы два фотона образовали при лобовом столкновении электрон и позитрон, энергия каждого из фотонов должна достичь энергии mс2 , соответствующей массе электрона и позитрона. Эта энергия равна 0,511003 миллиона электронвольт. Чтобы найти пороговую температуру, при которой у фотонов будет достаточно шансов иметь такую энергию, мы делим энергию на постоянную Больцмана (0,00008617 эВ на градус Кельвина) и получаем пороговую температуру шесть миллиардов градусов Кельвина (6 × 109 К). При любой более высокой температуре электроны и позитроны будут свободно рождаться в столкновениях фотонов друг с другом и потому будут присутствовать в очень больших количествах.

(Кстати, пороговая температура 6 × 109 К, которую мы получили для рождения электронов и позитронов из излучения, много выше, чем любая температура, с которой мы обычно имеем дело в теперешней Вселенной. Даже в центре Солнца температура всего около 15 миллионов градусов. Вот почему мы не привыкли видеть, чтобы электроны и позитроны выпрыгивали из пустого пространства, сколь бы ярким ни был свет).

Аналогичные соображения применимы к любому типу частиц. Фундаментальным правилом современной физики является то, что для каждого типа частиц в природе существует соответствующая античастица точно с теми же массой и спином, но с противоположным электрическим зарядом. Единственное исключение составляют некоторые чисто нейтральные частицы вроде самого фотона, которые можно рассматривать так, будто они сами — свои античастицы. Связь частицы и античастицы взаимна: позитрон есть античастица для электрона, а электрон — для позитрона. При достаточном количестве энергии всегда можно родить пару: частица-античастица любого сорта при столкновении пары фотонов.

(Существование частиц и античастиц есть прямое математическое следствие принципов квантовой механики и специальной теории относительности. Существование антиэлектрона было впервые теоретически предсказано в 1930 году Полем Адрианом Морисом Дираком. Не желая вводить в свою теорию неизвестную частицу, он отождествил антиэлектрон с единственной известной в те годы положительно заряженной частицей — протоном. Открытие позитрона в 1932 году подтвердило теорию античастиц и показало также, что протон — не античастица для электрона; у протона есть своя античастица — антипротон, открытый в Беркли в 50-х годах.)

Следующий после электрона и позитрона тип легчайших частиц — это мюон, или μ- , нечто вроде нестабильного тяжелого электрона, и его античастица μ+. Точно так же как электроны и позитроны, μ- и μ+ имеют противоположные электрические заряды, но равные массы и могут рождаться в столкновениях фотонов друг с другом. Частицы μ- и μ+ имеют каждая энергию покоя mс2 , равную 105,6596 миллионов электронвольт, что после деления на больцмановскую постоянную дает соответствующую пороговую температуру 1,2 миллиона миллионов градусов (1,2 × 1012 К). Пороговые температуры, соответствующие другим типам частиц, приведены в табл. 1. Рассматривая эту таблицу, мы можем сказать, какие частицы могли присутствовать в больших количествах в разные времена истории Вселенной: это как раз те частицы, чья пороговая температура была ниже температуры Вселенной в этот момент времени[32].

Сколько же этих материальных частиц в действительности имелось при температуре выше пороговой? В условиях высоких температуры и плотности, преобладавших в ранней Вселенной, число частиц определялось основным условием теплового равновесия: это число должно было быть столь велико, чтобы каждую секунду уничтожалось в точности столько же частиц, сколько рождалось. (Это значит, что спрос равен предложению.) Скорость, с какой любая данная пара частица — античастица будет аннигилировать на два фотона, примерно равна скорости, с какой любая данная пара фотонов одной и той же энергии будет превращаться в частицу и античастицу. Отсюда, условие теплового равновесия требует, чтобы число частиц каждого типа, чья пороговая температура ниже космической температуры, должно быть примерно равно числу фотонов. Если частиц меньше, чем фотонов, то они будут рождаться быстрее, чем уничтожаться, и их число будет расти; если же частиц больше, чем фотонов, то они будут уничтожаться быстрее, чем рождаться, и их число будет падать. Например, при температуре выше порога, равного шести миллиардам градусов, число электронов и позитронов должно быть примерно таким же, что и число фотонов, и Вселенная в эти времена может рассматриваться как состоявшая преимущественно из фотонов, электронов и позитронов, а не из одних фотонов.

Однако при температуре выше пороговой материальная частица ведет себя во многом подобно фотону. Ее средняя энергия примерно равна температуре, умноженной на постоянную Больцмана, так что при температуре много больше пороговой средняя энергия частицы много больше той энергии, которая соответствует ее массе[33], и поэтому массой можно пренебречь. При таких условиях давление и плотность энергии, определяемые материальными частицами данного типа, просто пропорциональны четвертой степени температуры, в точности как для фотонов. Таким образом, мы можем представить себе Вселенную в любой данный момент времени как состоящую из различных типов «излучения», причем каждый тип относится к той или иной разновидности частиц, чья пороговая температура была в этот момент времени ниже космической температуры. В частности, плотность энергии во Вселенной в любой момент времени пропорциональна четвертой степени температуры и числу разновидностей частиц, чья пороговая температура в этот момент времени ниже космической. Подобные условия, когда температура так высока, что пары частица-античастица в состоянии теплового равновесия так же распространены, как и фотоны, не существуют нигде в теперешней Вселенной, может быть, за исключением сердцевин взрывающихся звезд. Тем не менее мы достаточно доверяем нашим знаниям статистической механики, чтобы без опасений создавать теории о том, что должно было происходить при столь экзотических условиях в ранней Вселенной.

Чтобы быть точными, мы должны иметь в виду, что античастица вроде позитрона считается отдельной разновидностью. Кроме того, частицы типа фотонов и электронов существуют в двух различимых состояниях спина, и их нужно учитывать как отдельные разновидности. Наконец, частицы типа электрона (но не фотон) подчиняются специальному правилу, «принципу исключения Паули», которое запрещает двум частицам занимать одно и то же состояние; это правило снижает их вклад в полную плотность энергии на множитель семь восьмых. (Именно принцип исключения не допускает падения всех электронов в атоме на оболочку с наименьшей энергией, поэтому он ответственен за сложную оболочечную структуру атомов, обнаруживающуюся в периодической таблице элементов.) Эффективное число разновидностей каждого типа частиц приведено вместе с пороговыми температурами в табл. 1. Плотность энергии Вселенной при данной температуре пропорциональна четвертой степени температуры и эффективному числу разновидностей тех частиц, чья пороговая температура лежит ниже температуры Вселенной.

Спросим себя теперь: когда Вселенная была при такой высокой температуре? Скорость расширения Вселенной регулируется балансом между полем тяготения и направленным наружу импульсом содержимого Вселенной. При этом полная плотность энергии фотонов, электронов, позитронов является источником поля тяготения Вселенной в ранние времена. Мы видели, что плотность энергии Вселенной существенно зависит только от температуры, поэтому космическую температуру можно использовать как часы, рассматривая вместо тикания охлаждение при расширении Вселенной. Точнее, можно показать, что время, необходимое для того, чтобы плотность энергии Вселенной упала от одного значения до другого, пропорционально разности обратных квадратных корней из плотностей энергий (см. математическое дополнение 3). Но мы видели, что плотность энергии пропорциональна четвертой степени температуры и числу разновидностей частиц с пороговой температурой ниже действительной. Отсюда, пока температура не достигнет любого из «пороговых» значений, промежуток времени, нужный для того, чтобы Вселенная охладилась от одной температуры до другой, пропорционален разности обратных квадратов этих температур . Например, если мы начинаем с температуры 100 миллионов градусов (значительно ниже пороговой температуры для электронов) и находим, что требуется 0,06 года (или 22 дня) для того, чтобы температура упала до 10 миллионов градусов, то тогда требуется еще шесть лет, чтобы температура упала до одного миллиона градусов, еще 600 лет, чтобы температура упала до 100 000 градусов и так далее. Полное время, потребовавшееся на то, чтобы Вселенная охладилась от 100 миллионов до 3000 градусов Кельвина (т. е. до точки, когда содержимое Вселенной было близко к тому, чтобы стать прозрачным для излучения), равно 700 000 лет (рис. 8). Конечно, когда я пишу здесь «годы», я подразумеваю определенное число абсолютных единиц времени, например, таких, как определенное число периодов, с которым электрон совершает движение по орбите вокруг ядра в атоме водорода. Речь идет об эпохе задолго до того, как Земля начала свое вращение вокруг Солнца.

 

 

Рис. 8. Эра преобладания излучения.

Показана температура Вселенной как функция времени для промежутка от конца нуклеосинтеза до рекомбинации ядер и электронов в атомы.

 

Если Вселенная в первые несколько минут действительно состояла из строго равного числа частиц и античастиц, то, когда температура упала ниже одного миллиарда градусов, они все должны были проаннигилировать и ничего бы не осталось, кроме излучения. Имеется очень хорошее свидетельство, опровергающее такую возможность, — существуем мы! Должен был быть некоторый избыток электронов над позитронами, протонов над антипротонами и нейтронов над антинейтронами для того, чтобы что-то осталось после аннигиляции частиц и античастиц, т. е. для образования вещества теперешней Вселенной. Вплоть до этого места в данной главе я намеренно игнорировал сравнительно небольшое количество избыточного вещества. Такое приближение является хорошим, если мы хотим только рассчитать плотность энергии или скорость расширения ранней Вселенной; в предыдущей главе мы видели, что плотность энергии ядерных частиц не становится сравнимой с плотностью энергии излучения до момента, когда Вселенная охладится примерно до 4000 К. Однако небольшая приправа из оставшихся электронов и ядерных частиц требует нашего особого внимания, потому что эти частицы определяют состав нынешней Вселенной и, в частности, потому, что они являются главными составными частями автора и читателя.

Коль скоро мы допускаем возможность избытка вещества над антивеществом в первые несколько минут, мы сталкиваемся с проблемой определения полного перечня ингредиентов ранней Вселенной. В списке, публикуемом каждые шесть месяцев Лоуренсовской лабораторией в Беркли, имеются буквально сотни так называемых элементарных частиц. Неужели мы должны определить количество элементарных частиц каждого из этих типов? И почему нужно остановиться на элементарных частицах — не должны ли мы также определить количество различных типов атомов, молекул, соли и перца? В таком случае мы вправе решить, что Вселенная слишком произвольна для того, чтобы в ней стоило разбираться.

К счастью, Вселенная не настолько сложна. Чтобы показать, как становится возможным написать рецепт ее состава, необходимо еще немного подумать о том, что подразумевается под условием теплового равновесия. Я уже подчеркивал, сколь важно то, что Вселенная прошла через состояние теплового равновесия, — именно это позволяет нам говорить с такой уверенностью о составе Вселенной в любой данный момент времени. Все, что до сих пор мы обсуждали в данной главе, основано на следствиях известных свойств вещества и излучения в тепловом равновесии.

Когда столкновения или другие процессы приводят физическую систему в состояние теплового равновесия, всегда имеются некоторые величины, значения которых не меняются. Одной из таких «сохраняющихся величин» является полная энергия; хотя столкновения и могут передавать энергию от одной частицы к другой, они никогда не меняют полную энергию частиц, участвующих в столкновении. Каждому такому закону сохранения соответствует величина, значение которой нужно определить прежде, чем мы можем установить свойства системы в тепловом равновесии, — очевидно, если какая-то величина не меняется, пока система достигает теплового равновесия, ее значение не может быть выведено из условий равновесия, а должно быть установлено заранее. Система в тепловом равновесии поистине примечательна тем, что все ее свойства однозначно определяются, как только мы установим значения сохраняющихся величин. Вселенная прошла через состояние теплового равновесия, поэтому все, что нам требуется, чтобы дать полный рецепт ее состава в ранние времена, это знать, какие физические величины сохранялись при расширении Вселенной и каковы были значения этих величин.

Обычно вместо полного количества энергии системы в тепловом равновесии мы устанавливаем температуру. Для того сорта систем, которые до сих пор рассматривались и которые состоят исключительно из излучения и равного количества частиц и античастиц, температура — это все, что требуется задать, чтобы выяснить равновесные свойства системы. Но в общем случае в дополнение к энергии имеются другие сохраняющиеся величины и необходимо установить плотности каждой из них.

Например, в стакане воды при комнатной температуре непрерывно происходят реакции, в которых молекула воды разбивается на ион водорода (голый протон — ядро водорода с сорванным электроном) и ион гидроксила (атом кислорода, связанный с атомом водорода, с одним лишним электроном), или реакции, в которых ионы водорода и гидроксила вновь объединяются, образуя молекулы воды. Заметим, что в каждой такой реакции исчезновение молекулы воды сопровождается появлением иона водорода и наоборот, в то время как ионы водорода и гидроксила всегда появляются вместе. Следовательно, сохраняющиеся величины — это полное число молекул воды плюс число ионов водорода и число ионов водорода минус число ионов гидроксила. (Конечно, есть и другие сохраняющиеся величины вроде полного числа молекул воды плюс ионы гидроксила, но они суть простые комбинации двух фундаментальных сохраняющихся величин.) Свойства нашего стакана воды могут быть полностью определены, если мы зададим, что температура равна 300 К (комнатная температура по шкале Кельвина), что плотность молекул воды плюс ионов водорода равна 3,3 × 1022 молекул или ионов в кубическом сантиметре (что грубо соответствует воде при давлении на уровне моря) и что плотность ионов водорода минус ионов гидроксила равна нулю (в соответствии с нулевым полным зарядом)[34]. В частности, оказывается, что при таких условиях имеется один ион водорода примерно на каждые пятьсот миллионов молекул воды. Отметим, что мы не должны задавать это в нашем рецепте для стакана воды; мы выводим пропорцию ионов водорода из законов теплового равновесия. В то же время, мы не можем вывести из условий теплового равновесия плотности сохраняющихся величин — например, мы можем сделать плотность молекул воды плюс ионов водорода немного больше или меньше, чем 3,3 × 1022 молекул в кубическом сантиметре, повышая или понижая давление, — поэтому нам нужно задать их, чтобы знать, что находится в нашем стакане.

Этот пример также позволяет нам понять меняющийся смысл того, что мы называем «сохраняющимися» величинами. Если наша вода находится при температуре в миллионы градусов, скажем, внутри звезд, то тогда молекулам или ионам очень легко диссоциировать, а составляющим их атомам — потерять свои электроны. Сохраняющимися величинами являются числа электронов и ядер кислорода и водорода. Плотность молекул воды плюс атомов гидроксила при этих условиях нужно вычислять по правилам статистической механики, а не устанавливать заранее; конечно, эта плотность оказывается довольно малой. (В аду редко встретишь снежки.) На самом деле, при этих условиях происходят и ядерные реакции, так что даже число ядер каждого сорта не абсолютно фиксировано, но эти числа меняются столь медленно, что звезду можно рассматривать как постепенно переходящую из одного состояния равновесия в другое.

В конце концов, при температуре несколько тысяч миллионов градусов, которая характерна для ранней Вселенной, даже атомные ядра охотно диссоциируют на свои составные части — протоны и нейтроны. Реакции происходят столь быстро, что вещество и антивещество может легко рождаться из чистой энергии и вновь аннигилировать. При подобных условиях сохраняющиеся величины — это не число частиц какого-то определенного сорта. Вместо этого необходимые законы сохранения сводятся к такому небольшому числу законов, которые (насколько мы знаем) справедливы при всех возможных условиях. Считается, что есть лишь три сохраняющиеся величины, плотности которых нужно задать в нашем рецепте ранней Вселенной.

1. Электрический заряд . Мы можем порождать или уничтожать пары частиц с равными по величине и противоположными по знаку электрическими зарядами, но полный электрический заряд никогда не меняется. (Мы можем быть более уверены в этом законе сохранения, чем в каком-либо другом, так как если заряд не сохраняется, то общепринятая максвелловская теория электричества и магнетизма не будет иметь смысла.)

2. Барионное число . «Барион» — это объединяющий термин, включающий ядерные частицы (протоны и нейтроны) вместе с несколько более тяжелыми нестабильными частицами, известными как гипероны. Барионы и антибарионы могут рождаться и уничтожаться парами; кроме того, барионы могут распадаться на другие барионы, как в бета-распаде радиоактивных ядер, когда нейтрон переходит в протон или наоборот. Однако полное число барионов минус число антибарионов (антипротонов, антинейтронов, антигиперонов) никогда не меняется. Мы приписываем протону, нейтрону и гиперонам барионное число[35]+1, а соответствующим античастицам — барионное число -1; тогда правило заключается в том, что полное барионное число никогда не меняется. Представляется, что барионное число не имеет никакого динамического значения вроде заряда (ему не соответствует никакое поле). Барионное число есть средство бухгалтерского учета — его значение целиком исчерпывается тем фактом, что оно сохраняется[36].

3. Лептонное число . «Лептоны» — это легкие отрицательно заряженные частицы, электрон и мюон, а также электрически нейтральная частица нулевой массы, называемая нейтрино, и их античастицы позитрон, антимюон и антинейтрино. Несмотря на нулевые массу и заряд, нейтрино и антинейтрино не более фиктивны, чем фотоны; они несут энергию и импульс, как и любые другие частицы. Сохранение лептонного числа есть другое бухгалтерское правило — полное число лептонов минус полное число антилептонов никогда не меняется. (В 1962 году эксперименты с пучками нейтрино показали, что на самом деле имеется, по крайней мере, два типа нейтрино, «электронное» и «мюонное», и два типа лептонного числа: электронное лептонное число есть полное число электронов плюс нейтрино электронного типа минус число их античастиц, в то время как мюонное лептонное число есть полное число мюонов плюс нейтрино мюонного типа минус число их античастиц. Представляется, что оба эти числа абсолютно сохраняются, но с полной определенностью это не известно[37].)

Хороший пример действия этих правил дает нам радиоактивный распад нейтрона n на протон p , электрон e- и антинейтрино анти-ντ (электронного типа). Значения заряда, барионного числа и лептонного числа для каждой из частиц таковы:

 

Читатель легко может проверить, что сумма значений любой сохраняющейся величины для частиц в конечном состоянии равна значению той же величины для начального нейтрона. Это и есть то, что мы подразумеваем под сохранением величин. Законы сохранения далеко не бессодержательны, так как они говорят нам, что большое число реакций не происходит, например, запрещенный процесс распада, в котором нейтрон распадается на протон, электрон и более чем одно антинейтрино.

Чтобы завершить наш рецепт состава Вселенной в любой заданный момент времени, мы должны, таким образом, наряду с температурой задать заряд, барионное число и лептонное число в единице объема. Законы сохранения говорят нам, что в любом объеме, расширяющемся вместе со Вселенной, значения этих величин остаются постоянными. Следовательно, заряд, барионное число и лептонное число в единице объема меняются просто обратно пропорционально кубу размера Вселенной. (В главе III мы видели, что число фотонов в единице объема пропорционально кубу температуры, в то же время, как было отмечено в начале этой главы, температура меняется обратно пропорционально размеру Вселенной.) Поэтому заряд, барионное число и лептонное число, приходящееся на один фотон , остаются фиксированными, и наш рецепт может быть задан раз и навсегда указанием значений сохраняющихся величин по отношению к числу фотонов.

(Строго говоря, величина, меняющаяся обратно пропорционально кубу размера Вселенной, — это не число фотонов в единице объема, а энтропия в единице объема. Энтропия — фундаментальная величина статистической механики, связанная со степенью беспорядка в физической системе. Не считая условного численного множителя, энтропия в достаточно хорошем приближении дается полным числом всех частиц в тепловом равновесии, как материальных частиц, так и фотонов, причем отдельные разновидности частиц имеют свои весовые множители, указанные в табл. 1. Те константы, которые мы реально должны использовать для характеристики нашей Вселенной, это отношения заряда к энтропии, барионного числа к энтропии и лептонного числа к энтропии. Однако даже при очень высоких температурах число материальных частиц не более, чем того же порядка величины, что и число фотонов, поэтому мы не делаем серьезной ошибки, если будем использовать в качестве стандарта для сравнения число фотонов вместо энтропии.)

Легко оценить космический электрический заряд, приходящийся на один фотон. Насколько мы знаем, средняя плотность электрического заряда равна нулю во всей Вселенной. Если бы Земля и Солнце имели избыток положительных зарядов над отрицательными (или наоборот) всего лишь на одну часть на миллион миллионов миллионов миллионов миллионов миллионов (1036), то электрическое отталкивание между ними было бы больше гравитационного притяжения. Если Вселенная конечна и замкнута, то мы можем даже усилить это утверждение до теоремы: полный заряд Вселенной должен равняться нулю, так как в противном случае линии электрического поля накручивались бы и накручивались на Вселенную, приводя к бесконечному электрическому полю. Но открыта ли Вселенная или замкнута, вполне надежно можно утверждать, что космический электрический заряд на фотон пренебрежимо мал.

Барионное число на фотон также легко оценить. Единственные стабильные барионы — это ядерные частицы (протон и нейтрон) и их античастицы (антипротон и антинейтрон). На самом деле свободный нейтрон нестабилен (среднее время жизни 15,3 минуты), но ядерные силы делают нейтрон абсолютно стабильным в атомных ядрах обычного вещества. Кроме того, насколько мы знаем, во Вселенной нет значительных количеств антивещества (об этом подробнее см. ниже). Следовательно, барионное число любой части нынешней Вселенной, по существу, равно числу ядерных частиц. Мы заметили в предыдущей главе, что сейчас имеется одна ядерная частица на каждый миллиард фотонов микроволнового фона излучения (точная цифра неопределенна), поэтому барионное число на фотон примерно равно одной миллиардной (10-9).

Это поистине примечательный вывод. Чтобы увидеть его следствия, рассмотрим время в прошлом, когда температура была выше десяти миллионов миллионов градусов (1013 К), т. е. выше пороговой температуры для нейтронов и протонов. В это время Вселенная содержала множество ядерных частиц и античастиц, примерно столько же, сколько фотонов. Но барионное число есть разность между числами ядерных частиц и античастиц. Если эта разность была в миллиард раз меньше, чем число фотонов, и, следовательно, в миллиард раз меньше, чем полное число ядерных частиц, то, отсюда, число ядерных частиц превышало число античастиц всего лишь на одну часть на миллиард. С этой точки зрения, когда Вселенная охладилась ниже пороговой температуры для ядерных частиц, все античастицы проаннигилировали с соответствующими частицами, оставив в наследство крошечный избыток частиц над античастицами, который в конце концов превратился в знакомый нам мир.

Появление в космологии безразмерного числа, столь малого, как одна часть на миллиард, привело некоторых теоретиков к предположению, что это число в действительности есть нуль — это значит, что Вселенная на самом деле содержит одинаковое количество вещества и антивещества. Тогда тот факт, что барионное число на фотон оказывается равным одной части на миллиард, мог бы быть объяснен предположением, что когда-то, прежде чем космическая температура упала ниже пороговой температуры для ядерных частиц, произошло разделение Вселенной на различные области, некоторые с небольшим избытком (несколько частей на миллиард) вещества над антивеществом, а другие — с небольшим избытком антивещества над веществом. После того как температура упала и максимально возможное количество пар частица-античастица проаннигилировало, мы получили бы Вселенную, состоящую из областей чистого вещества и областей чистого антивещества. Недостаток этой идеи в том, что никто не видел где-либо во Вселенной признаков заметного количества антивещества. Считается, что космическое излучение, проникающее в верхнюю атмосферу нашей Земли, частично приходит с далеких расстояний в нашей Галактике, а частично, возможно, и из областей вне ее. Это космическое излучение подавляющим образом состоит из вещества, а не из антивещества, — в самом деле, никто еще не наблюдал антипротон или антиядро в космических лучах. Вдобавок, мы не наблюдаем фотоны, которые должны были бы образоваться в результате аннигиляции вещества и антивещества в космических масштабах.

Другая возможность — в том, что плотность фотонов (или, правильнее, энтропии) не оставалась пропорциональной обратному кубу размера Вселенной. Такое могло случиться, если был какой-то вид отклонения от теплового равновесия, что-то вроде трения или вязкости, которые могли нагревать Вселенную и образовывать лишние фотоны. В этом случае барионное число на фотон могло вначале иметь какое-то разумное значение, возможно, близкое к единице, а затем упасть до его теперешнего малого значения, так как образовалось много фотонов. Трудность здесь в том, что никто не сумел предложить сколько-нибудь детальный механизм образования таких лишних фотонов. Несколько лет тому назад я сам пытался найти такой механизм, но без малейшего успеха[38].

В последующем я буду игнорировать все эти «нестандартные» возможности и буду просто предполагать, что барионное число на фотон таково, каким оно, по-видимому, кажется: одна часть на миллиард.

Что можно сказать о плотности лептонного числа во Вселенной? Из того факта, что Вселенная не имеет электрического заряда, сразу же вытекает, что сейчас имеется ровно один отрицательно заряженный электрон на каждый положительно заряженный протон. Около 87 процентов ядерных частиц в теперешней Вселенной составляют протоны, так что число электронов близко к полному числу ядерных частиц. Если бы электроны были единственными лептонами в нынешней Вселенной, мы могли бы немедленно заключить, что лептонное число на фотон примерно такое же, как и барионное число на фотон.

Однако помимо электрона и позитрона имеется другой тип стабильных частиц, несущий ненулевое лептонное число. Нейтрино и его античастица антинейтрино — это электрически нейтральные безмассовые частицы вроде фотона, но с лептонными числами +1 и —1 соответственно. Следовательно, чтобы определить плотность лептонного числа в сегодняшней Вселенной, мы должны что-то знать о распространенности нейтрино и антинейтрино.

К сожалению, получить эту информацию невероятно трудно. Нейтрино похоже на электрон тем, что оно не чувствует сильных ядерных сил, которые удерживают протоны и нейтроны внутри атомного ядра. (Иногда я буду говорить «нейтрино», подразумевая как нейтрино, так и антинейтрино.) Однако в противоположность электрону нейтрино электрически нейтрально, так что оно не чувствует ни электрических, ни магнитных сил вроде тех, которые удерживают электроны внутри атома. На самом деле, нейтрино вообще слабо подвержено действию каких бы то ни было сил. Как и все прочее во Вселенной, оно подвержено действию сил тяготения и, кроме того, ощущает слабые силы, ответственные за радиоактивные процессы, вроде упомянутого выше распада нейтрона (однако эти силы приводят лишь к ничтожному взаимодействию с обычным веществом). С целью показать, насколько слабо взаимодействует нейтрино, обычно приводят такой пример: для того чтобы иметь заметную вероятность остановки или рассеяния любого данного нейтрино, образованного в каком-то радиоактивном процессе, нам потребуется поместить на его пути слой свинца толщиной несколько световых лет. Солнце непрерывно излучает нейтрино, образованные при превращении протонов в нейтроны в ядерных реакциях в сердцевине Солнца; эти нейтрино пронизывают нас сверху в течение дня и снизу ночью, когда Солнце — на другой стороне Земли, так как Земля для них полностью прозрачна. Существование нейтрино задолго до того, как они были обнаружены, предположил Вольфганг Паули в качестве средства для расчета баланса энергии в процессах типа распада нейтрона. Только лишь в конце 50-х годов стало возможным непосредственно детектировать нейтрино или антинейтрино, образуя огромные их количества в ядерных реакторах или ускорителях частиц. При этом несколько сот нейтрино на самом деле останавливались и вызывали реакции внутри регистрирующей аппаратуры.

Легко понять, что при такой чрезвычайной слабости взаимодействия колоссальные количества нейтрино и антинейтрино могут заполнять Вселенную вокруг нас, причем мы и не подозреваем об их существовании. Удается получить ряд слабых верхних пределов на число нейтрино и антинейтрино; если бы этих частиц было слишком много, это слегка повлияло бы на определенные слабые ядерные процессы распада, и, вдобавок, скорость космического расширения замедлялась бы сильнее, чем наблюдается. Однако эти верхние пределы не исключают возможности того, что плотность нейтрино и (или) антинейтрино такая же, как и плотность фотонов, причем с близкими энергиями[39].

Несмотря на эти замечания, космологи обычно предполагают, что лептонное число (числа электронов, мюонов и нейтрино минус числа соответствующих античастиц) на фотон мало, много меньше единицы. Это делается исключительно по аналогии: барионное число на фотон мало, так почему же лептонное число на фотон не должно быть мало? Это одно из наименее надежных предположений, вводимых в стандартную модель, но, по счастью, даже если оно и неверно, общая картина, которую мы получим, изменилась бы лишь в деталях.

Конечно, при температуре, выше пороговой для электронов, было множество лептонов и антилептонов — примерно столько же электронов и позитронов, сколько и фотонов. Кроме того, в этих условиях Вселенная была столь горяча и плотна, что даже призрачные нейтрино достигали теплового равновесия, так что нейтрино и антинейтрино было примерно столько же, сколько фотонов. Предположение, делаемое в стандартной модели, заключается в том, что лептонное число (разность чисел лептонов и антилептонов) есть сейчас и было тогда много меньше числа фотонов. Должен был быть какой-то небольшой избыток лептонов над антилептонами вроде упомянутого выше избытка барионов над антибарионами, который сохранился до нашего времени. Вдобавок нейтрино и антинейтрино взаимодействуют столь слабо, что большое их количество могло избежать аннигиляции, и в этом случае сейчас может быть примерно равное количество нейтрино и антинейтрино, сравнимое с числом фотонов. Похоже, что так оно и есть на самом деле (мы это увидим в следующей главе), но в обозримом будущем не предвидится ни малейшего шанса наблюдать вокруг нас эти огромные количества нейтрино и антинейтрино.

Вот, значит, каков вкратце наш рецепт состава ранней Вселенной. Возьмите электрический заряд на фотон, равный нулю, барионное число на фотон, равное одной части на миллиард, и неопределенное, но малое лептонное число на фотон. Установите в любой данный момент времени температуру, равную температуре нынешнего фона излучения З К, умноженную на отношение теперешнего размера Вселенной к ее размеру в тот момент времени. Хорошенько размешайте так, чтобы детальное распределение частиц разных типов определялось требованиями теплового равновесия, и поместите в расширяющуюся Вселенную, скорость расширения которой определяется порождаемым этой средой полем тяготения. Если теперь как следует подождать, это варево должно превратиться в нашу теперешнюю Вселенную.

 

V. ПЕРВЫЕ ТРИ МИНУТЫ

 

Теперь мы подготовлены к тому, чтобы проследить ход космической эволюции в течение ее первых трех минут. Вначале события развиваются значительно быстрее, чем потом, и будет нецелесообразно показывать снимки, разделенные равными интервалами времени, как в обычном кино. Вместо этого я приспособлю скорость нашего фильма к падению температуры Вселенной, останавливая камеру, чтобы сделать снимок каждый раз, как температура упадет примерно в три раза.

К сожалению, я не могу начать фильм в нулевой момент времени при бесконечной температуре. Выше пороговой температуры полторы тысячи миллиардов градусов Кельвина (1,5 × 1012 К) Вселенная содержала большое количество частиц, известных как пи-мезоны, масса которых составляет примерно одну седьмую часть массы ядерной частицы (см. табл. 1). В отличие от электронов, позитронов, мюонов и нейтрино, эти пи-мезоны очень сильно взаимодействуют друг с другом и с ядерными частицами — в действительности, непрерывный обмен пи-мезонами между ядерными частицами ответственен за большую часть силы притяжения, которая удерживает от развала атомные ядра. Наличие большого количества таких сильновзаимодействующих частиц чрезвычайно затрудняет расчет поведения вещества при сверхвысоких температурах. Чтобы избежать сложных математических проблем, я начну историю в этой главе с момента времени около одной сотой секунды после начала, когда температура опустилась до нескольких сот миллиардов градусов Кельвина, что заведомо ниже пороговых температур для пи-мезонов, мюонов и всех более тяжелых частиц. В главе VII я скажу немного о том, что, по мнению физиков-теоретиков, могло происходить ближе к самому началу.

Договорившись об этом, начнем наш фильм.

Первый кадр . Температура Вселенной равна 100 миллиардам градусов Кельвина (1011 К). Вселенная проще и легче поддается описанию, чем когда-либо в будущем. Она заполнена везде одинаковым, однородным по свойствам супом из вещества и излучения, причем каждая частица в нем очень быстро сталкивается с другими частицами. Поэтому, несмотря на быстрое расширение, Вселенная находится в состоянии почти идеального теплового равновесия. Составные части Вселенной определяются правилами статистической механики и вообще не зависят от того, что происходило до первого кадра. Нам надо только знать, что температура равна 1011 К и что сохраняющиеся величины — заряд, барионное число, лептонное число — все очень малы или равны нулю.

Частицы, имеющиеся в изобилии — это те, чья пороговая температура ниже 1011 К; это электрон и его античастица позитрон и, конечно, безмассовые частицы фотон, нейтрино и антинейтрино. (Вновь см. табл. 1). Вселенная столь плотна, что даже нейтрино, которые могут годами путешествовать сквозь свинцовые бруски, не будучи рассеянными, удерживаются в тепловом равновесии с электронами, позитронами и фотонами благодаря быстрым столкновениям с ними и друг с другом. (Опять же я буду иногда употреблять просто термин «нейтрино», подразумевая как нейтрино, так и антинейтрино.)

Другое большое упрощение — температура 1011 К много выше пороговой температуры для электронов и позитронов. Отсюда вытекает, что эти частицы, так же как фотоны и нейтрино, ведут себя просто как много разных сортов излучения. Какова плотность энергии этих различных сортов излучения? В соответствии с табл. 1, электроны и позитроны вместе вносят 7/4 энергии фотонов, а нейтрино и антинейтрино вносят столько же, сколько электроны и позитроны[40], так что полная плотность энергии больше, чем плотность энергии чисто электромагнитного излучения при этой же температуре, на множитель

 

7/4 + 7/4 + 1 = 9/2.

 

Закон Стефана-Больцмана (см. главу III) дает для плотности энергии электромагнитного излучения при температуре 1011 К значение 4,72 × 1044 эВ на литр, так что полная плотность энергии во Вселенной при этой температуре была в 9/2 раза больше, или 21 × 1044 эВ на литр. Это эквивалентно плотности массы 3,8 миллиарда килограмм на литр, или в 3,8 миллиарда раз больше плотности воды при нормальных земных условиях. (Когда я говорю, что данная энергия эквивалентна данной массе, я, конечно, подразумеваю, что это та энергия, которая высвободилась бы в соответствии с формулой Эйнштейна Е = mс2 , если бы вся масса полностью превратилась в энергию.) Если бы гора Эверест состояла из вещества такой плотности, то ее притяжение разрушило бы Землю.

Вселенная в первом кадре быстро расширяется и остывает. Скорость ее расширения задается условием, что каждый кусочек Вселенной летит прочь от любого произвольного центра как раз со скоростью отрыва. При чудовищных плотностях первого кадра скорость отрыва соответственно велика — характерное время расширения Вселенной составляет примерно 0,02 с. (См. математическое дополнение 3). «Характерное время расширения» можно грубо определить как время, в 100 раз большее того промежутка времени, за который размер Вселенной увеличился на один процент. Более точно, характерное время расширения в любую эпоху есть обратная величина «постоянной» Хаббла в эту эпоху. Как отмечено в главе II, возраст Вселенной всегда меньше характерного времени расширения, потому что тяготение непрерывно замедляет расширение.)

В момент времени, соответствующий первому кадру, имеется небольшое число ядерных частиц, около одного протона или нейтрона на каждый миллиард фотонов, электронов или нейтрино. Чтобы в конце концов предсказать распространенность химических элементов, образованных в ранней Вселенной, нам потребуется также знать относительную пропорцию протонов и нейтронов. Нейтрон тяжелее протона, причем разность масс между ними эквивалентна энергии 1,293 миллиона электронвольт. Однако характерная энергия электронов, позитронов и других частиц при температуре 1011 К много больше — около 10 миллионов электронвольт (постоянная Больцмана, умноженная на температуру). Следовательно, столкновения нейтронов или протонов со значительно более многочисленными электронами, позитронами и другими частицами будут приводить к быстрым переходам протонов в нейтроны и обратно. Наиболее важными реакциями являются:

антинейтрино плюс протон дают позитрон плюс нейтрон (и обратно);

нейтрино плюс нейтрон дают электрон плюс протон (и обратно).

С учетом нашего предположения, что полное лептонное число и заряд на фотон очень малы, количество нейтрино почти точно такое же, как и антинейтрино, а позитронов столько же, сколько электронов, так что переходы от протона к нейтрону так же быстры, как и переходы от нейтрона к протону. (Радиоактивным распадом нейтрона можно пренебречь, так как он занимает около 15 минут, а мы имеем сейчас дело со шкалой времени в сотые доли секунды.) Равновесие, таким образом, требует, чтобы количества протонов и нейтронов в первом кадре были почти равны. Эти ядерные частицы все еще не связаны в ядра; энергия, необходимая для того, чтобы разбить типичное ядро на составные части, равна всего лишь от шести до восьми миллионов электронвольт на ядерную частицу; это меньше, чем характерная тепловая энергия при температуре 1011 К, так что сложные ядра разрушаются так же быстро, как и образуются.

Естественным было бы спросить, насколько велика была Вселенная в очень раннее время. К сожалению, мы не знаем этого и даже не уверены, что такой вопрос имеет какой-то смысл. Как отмечалось в главе II, возможно, что сейчас Вселенная бесконечна, в таком случае она была также бесконечна и во время первого кадра и всегда будет бесконечной. В то же время, возможно, что Вселенная сейчас имеет конечную длину окружности, иногда оцениваемую примерно в 125 миллиардов световых лет. (Длина окружности Вселенной есть то расстояние, которое нужно пройти по прямой линии, прежде чем обнаружить, что вы вернулись назад, туда, откуда был начат путь. Приведенная оценка основана на современном значении постоянной Хаббла в предположении, что плотность Вселенной примерно вдвое больше «критического» значения.) Так как температура Вселенной падает обратно пропорционально ее размеру, то длина окружности Вселенной в момент времени первого кадра была меньше теперешней пропорционально отношению температур тогда (1011 К) и теперь (З К); это дает для первого кадра длину окружности около четырех световых лет. Ни одна из деталей истории космической эволюции в первые несколько минут не зависит от того, равна ли длина окружности Вселенной бесконечности или лишь нескольким световым годам.

Второй кадр. Температура Вселенной равна 30 миллиардам градусов Кельвина (3 × 1010 К). С момента первого кадра пролетело 0,11 секунды. Качественно ничего не изменилось — состав Вселенной все еще определяется электронами, позитронами, нейтрино, антинейтрино и фотонами, причем все они находятся в тепловом равновесии и при температуре значительно выше пороговой. Так как плотность энергии падает просто как четвертая степень температуры, то она в 30 миллионов раз больше плотности энергии, содержащейся в массе покоя обычной воды. Скорость расширения упала как квадрат температуры, так что характерное время расширения Вселенной теперь увеличилось до 0,2 секунды. Малое число ядерных частиц все еще не связано в атомные ядра, но с падением температуры более тяжелым нейтронам теперь существенно легче превратиться в более легкие протоны, чем наоборот. Баланс ядерных частиц по этой причине сдвинулся к 38 процентам нейтронов и 62 процентам протонов.

Третий кадр. Температура Вселенной равна 10 миллиардам градусов Кельвина (1010 К). С момента первого кадра пролетело 1,09 секунды. К этому времени уменьшившиеся плотность и температура настолько увеличили среднее свободное время нейтрино и антинейтрино, что они начинают вести себя как свободные частицы, не находясь более в тепловом равновесии с электронами, позитронами и фотонами. С этого момента они перестают играть сколько-нибудь активную роль в нашей истории, за исключением того, что их энергия продолжает являться частью источника гравитационного поля Вселенной. Когда нейтрино выходят из теплового равновесия, ничего особенного не происходит. (Перед этим «отъединением» средняя длина волны нейтрино была обратно пропорциональна температуре, а так как температура падала обратно пропорционально размеру Вселенной, то длина волны нейтрино увеличивалась прямо пропорционально размеру Вселенной. После отъединения нейтрино стали свободно расширяться, но общее красное смещение продолжало растягивать их длину волны прямо пропорционально размеру Вселенной. Кстати, это показывает, что знание точного момента отъединения нейтрино не очень важно, вдобавок это и трудно сделать, так как вычисление зависит от деталей теории нейтринных взаимодействий, установленных не полностью.)

Полная плотность энергии уменьшилась по сравнению с предыдущим кадром в количество раз, равное четвертой степени отношения температур, так что сейчас она эквивалентна плотности массы, в 380000 раз большей, чем у воды. Характерное время расширения Вселенной соответственно увеличилось примерно до двух секунд. Температура сейчас лишь вдвое превышает пороговую температуру для электронов и позитронов, так что они начинают аннигилировать быстрее, чем вновь рождаются из излучения.

Все еще слишком горячо для того, чтобы нейтроны и протоны на какое-то заметное время связались в атомные ядра. Уменьшившаяся температура позволила протон-нейтронному балансу сдвинуться к 24 процентам нейтронов и 76 процентам протонов.

Четвертый кадр. Теперь температура Вселенной равна трем миллиардам градусов Кельвина (3 × 109 К). С момента первого кадра прошло 13,82 секунды. Мы теперь находимся ниже пороговой температуры для электронов и позитронов, так что они начинают быстро исчезать, переставая быть главными составными частями Вселенной. Энергия, выделившаяся при их аннигиляции, замедлила скорость, с которой Вселенная охлаждается, так что нейтрино, которые не получили ни капли этого добавочного тепла, теперь на восемь процентов холоднее электронов, позитронов и фотонов. С этого момента, говоря о температуре Вселенной, мы будет подразумевать температуру фотонов . С учетом быстрого исчезновения электронов и позитронов плотность энергии Вселенной сейчас несколько меньше, чем она была бы, если бы просто падала как четвертая степень температуры.

Теперь уже достаточно прохладно для того, чтобы образовались различные стабильные ядра вроде гелия (4Не), но это не происходит сразу. Причина в том, что Вселенная все еще столь быстро расширяется, что ядра могут образовываться лишь в серии быстрых двухчастичных реакций. Например, протон и нейтрон могут образовать ядро тяжелого водорода, или дейтерия, причем избыток энергии и импульса уносится фотоном. Ядро дейтерия может затем столкнуться с протоном или нейтроном и образовать либо ядро легкого изотопа гелия-3 (3Не), состоящего из двух протонов и нейтрона, либо ядро самого тяжелого изотопа водорода, называемого тритием (3Н), состоящего из протона и двух нейтронов. Наконец, гелий-3 может столкнуться с нейтроном, а тритий — с протоном, причем в обоих случаях образуется ядро обычного гелия (4Не), состоящего из двух протонов и двух нейтронов. Но для того чтобы эта цепочка реакций произошла, нужно начать с первого шага — с образования дейтерия[41].

Обычный гелий — это сильносвязанное ядро, поэтому, как я говорил, он может удерживаться и при температуре третьего кадра. Тритий и гелий-3 связаны много слабее, а дейтерий — особенно слабо. (Чтобы развалить ядро дейтерия на части, нужна лишь девятая часть той энергии, которая требуется, чтобы выбить одну ядерную частицу из ядра гелия). При температуре четвертого кадра 1010 К ядра дейтерия разрушаются так же быстро, как и образуются, поэтому более тяжелые ядра не имеют шансов образоваться. Нейтроны продолжают превращаться в протоны, хотя и значительно медленнее, чем раньше; баланс теперь составляет 17 процентов нейтронов и 83 процента протонов.

Пятый кадр. Теперь температура Вселенной равна одному миллиарду градусов Кельвина (109 К), что всего лишь в 70 раз горячее, чем в центре Солнца. С момента первого кадра прошло три минуты и две секунды. Большинство электронов и позитронов исчезло, и главными составными частями Вселенной являются теперь фотоны, нейтрино и антинейтрино. Энергия, выделившаяся при аннигиляции электронов и позитронов, дала фотонам температуру на 35 процентов большую, чем у нейтрино.

Сейчас Вселенная уже достаточно прохладна, чтобы могли удерживаться ядра трития и гелия-3 так же, как и обычного гелия, однако «дейтериевая щель»[42]все еще существует: ядра дейтерия не удерживаются от развала достаточно долго для того, чтобы дать возможность образоваться заметному числу более тяжелых ядер. Столкновения нейтронов и протонов с электронами, нейтрино с их античастицами сейчас стали уже довольно редкими, но становится существенным распад свободного нейтрона; каждые 100 секунд 10 процентов остающихся нейтронов распадаются на протоны. Теперь нейтрон-протонный баланс составляет 14 процентов нейтронов и 86 процентов протонов.

Чуть позже . В какой-то момент времени, вскоре после пятого кадра, происходит драматическое событие: температура падает до точки, при которой ядра дейтерия могут удерживаться от развала. Раз пройдена дейтериевая щель, более тяжелые ядра могут очень быстро образовываться в цепочке двухчастичных реакций, описанных в четвертом кадре[43]. Однако ядра тяжелее гелия не образуются в заметном количестве благодаря другим щелям: не существует стабильных ядер с пятью или восемью ядерными частицами[44]. Следовательно, как только температура достигает точки, когда может образоваться дейтерий, почти все оставшиеся нейтроны немедленно уходят на приготовление ядер гелия. Точная температура, при которой это происходит, слегка зависит от числа ядерных частиц на фотон, так как высокая плотность частиц несколько облегчает образование ядер. (Именно поэтому данный момент времени я обозначил неопределенно словами «чуть позже, чем пятый кадр».) В случае одного миллиарда фотонов на одну ядерную частицу нуклеосинтез начнется при температуре 900 миллионов градусов Кельвина (0,9 × 109К). С момента первого кадра прошло уже три минуты и сорок шесть секунд. (Читатель простит мне неточность в названии этой книги «Первые три минуты». Это просто лучше звучит, чем «Первые три и три четверти минуты».) Как раз перед началом нуклеосинтеза, нейтронный распад сдвинул нейтрон-протон-ный баланс до 13 процентов нейтронов и 87 процентов протонов. После нуклеосинтеза доля гелия по массе в точности равна доле всех ядерных частиц, связанных в гелии; половина из них — нейтроны, и практически все нейтроны связаны в ядре гелия, так что доля гелия по массе просто есть удвоенная доля нейтронов среди ядерных частиц, т. е. около 26 процентов. Если плотность ядерных частиц несколько выше, нуклеосинтез начнется немного раньше, когда еще распалось не так много нейтронов, поэтому образуется чуть больше гелия, но, вероятно, не более чем 28 процентов по массе (рис. 9).

 

Рис. 9. Сдвиг нейтрон-протонного баланса.Показана доля нейтронов по отношению ко всем ядерным частицам как функция температуры и времени. Часть кривой, помеченная надписью «тепловое равновесие», описывает период, в течение которого плотности и температуры были столь высоки, что среди всех частиц достигалось тепловое равновесие; доля нейтронов в этой области может быть вычислена по известной разности масс нейтрона и протона с помощью правил статистической механики. Часть кривой, помеченная надписью «распад нейтрона», описывает период, в течение которого все процессы взаимопревращений нейтронов и протонов исчезли, за исключением радиоактивного распада свободного нейтрона. Сплошная часть кривой зависит от детальных расчетов вероятностей процессов слабого взаимодействия. Пунктирная часть кривой показывает, что случилось бы, если бы ка-ким-то образом было предотвращено образование ядер. В действительности, в момент времени где-то внутри интервала, отмеченного стрелкой с надписью «эра нуклеосинтеза», нейтроны быстро объединились в ядра гелия и нейтрон-протонное отношение замерзло на том значении, которое оно в этот момент имело. Эту кривую можно также использовать для оценки доли (по массе) космологически образованного гелия: для любой данной температуры или данного времени нуклеосинтеза эта доля в точности равна удвоенной нейтронной фракции в этот момент

 

Мы теперь достигли и даже перешли запланированную точку по времени, но, чтобы лучше увидеть то, чего мы достигли, бросим последний взгляд на Вселенную после еще одного падения температуры.

Шестой кадр. Теперь температура Вселенной равна 300 миллионам градусов Кельвина (3 × 108 К). С момента первого кадра прошло 34 минуты и 40 секунд. Все электроны и позитроны теперь полностью проаннигилировали, за исключением маленького (одна часть на миллиард) избытка электронов, необходимого для компенсации заряда протонов. Выделившаяся при этой аннигиляции энергия дала фотонам температуру, которая теперь уж навсегда на 40,1 процента выше, чем у нейтрино (см. математическое дополнение 6). Плотность энергии Вселенной эквивалентна теперь плотности массы, составляющей 9,9 процента плотности воды; 31 процент находится в форме нейтрино и антинейтрино и 69 процентов — в форме фотонов. Такая плотность энергии дает характерное время расширения Вселенной, равное одному часу с четвертью. Ядерные процессы остановились — ядерные частицы большей частью либо связаны в ядра гелия, либо являются свободными протонами (ядрами водорода), причем доля гелия по массе — от 22 до 28 процентов. На каждый свободный или связанный протон имеется один электрон, но Вселенная все еще слишком горяча, чтобы могли удержаться стабильные атомы.

Вселенная будет продолжать расширяться и охлаждаться, но в течение 700 000 лет не произойдет ничего особенно интересного. К этому времени температура упадет до точки, когда электроны и ядра могут образовывать стабильные атомы; исчезновение свободных электронов сделает содержимое Вселенной прозрачным для излучения; разъединение вещества и излучения позволит веществу начать формироваться в галактики и звезды. Пройдет еще примерно 10 миллиардов лет, и живые существа начнут реконструировать эту историю.

Этот расчет ранней Вселенной имеет одно следствие, которое немедленно можно сопоставить с наблюдениями: оставшийся после первых трех минут материал, из которого должны были первоначально образоваться звезды, состоял на 22–28 процентов из гелия, а остальное почти все было водородом. Как мы видели, этот результат зависит от предположения, что имеется огромное отношение числа фотонов к числу ядерных частиц, что, в свою очередь, основано на измеренной температуре теперешнего фона космического микроволнового излучения, равной З К. Первый расчет космологического образования гелия, использовавший измеренную температуру излучения, был сделан П.Дж. Е. Пиблзом в Принстоне в 1965 году, вскоре после открытия Пензиасом и Вилсоном микроволнового фона. Похожий результат был независимо получен почти в то же самое время в более искусном вычислении Роберта Вагонера, Уильяма Фаулера и Фреда Хойла. Этот результат был ошеломляющим успехом стандартной модели, так как в это время уже имелись независимые оценки, что Солнце и другие звезды начали свою жизнь, состоя большей частью из водорода и лишь на 20–30 процентов из гелия!

Конечно, на Земле очень мало гелия, но это только потому, что атомы гелия так легки и так химически инертны, что большинство их покинуло Землю многие века тому назад. Оценки изначальной распространенности гелия во Вселенной основаны на сравнении детальных расчетов звездной эволюции со статистическим анализом наблюдаемых свойств звезд, а также с прямыми наблюдениями линий гелия в спектрах горячих звезд и межзвездного материала. В самом деле, как указывает само название, гелий был идентифицирован впервые как элемент при исследовании спектра солнечной атмосферы Дж. Норманом Локайром в 1868 году.



Просмотров 458

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!