Главная
Обратная связь
Дисциплины:
Архитектура (936) Биология (6393) География (744) История (25) Компьютеры (1497) Кулинария (2184) Культура (3938) Литература (5778) Математика (5918) Медицина (9278) Механика (2776) Образование (13883) Политика (26404) Правоведение (321) Психология (56518) Религия (1833) Социология (23400) Спорт (2350) Строительство (17942) Технология (5741) Транспорт (14634) Физика (1043) Философия (440) Финансы (17336) Химия (4931) Экология (6055) Экономика (9200) Электроника (7621)
|
Магнитный момент контура с током. Магнитная индукция
Опыт показывает, что электрические токи взаимодействуют между собой, напрмер, токи I притягиваются, а токи I отталкиваются. Взаимодействие токов осуществляется через поле, которое называется магнитным. Следовательно, движущиеся заряды (токи ) изменяют свойства окружающего их пространства - создают в нем магнитное поле. Это поле проявляется в том, что на движущиеся в нем заряды (токи) действуют силы. Подобно тому, как для исследования электрического поля мы использовали пробный заряд, применим для исследования магнитного поля пробный ток, циркулирующий в плоском замкнутом контуре очень малых размеров . Будем называть такой контур пробным контуром.
Ориентацию его в пространстве характеризует направление нормали к контуру, восстанавливаемой по правилу правого буравчика: вращаем рукоятку правого буравчика по направлению тока в контуре, тогда направление его поступательного движения даст направление нормали (см. рис. 1). Помещая пробный контур в магнитное поле, обнаружим, что поле стремится повернуть контур (нормаль) в определенном направлении.
Вращающий момент, действующий на контур, зависит как от свойств магнитного поля в данной точке, так и от свойств контура. Оказывается, что максимальная величина вращающего момента пропорциональна IS, т.е. M ~ IS, где I -ток контуре, S - площадь контура с током (рис. 1). Векторную величину (1)
называют магнитным моментом контура, который в СИ измеряется в А×м2.
На пробные контуры с разными рm, помещаемыми в данную точку магнитного поля, будут действовать разные по величине максимальные вращающие моменты М , но отношение М / р будет для всех контуров одинаково, оно будет являться силовой характеристикой магнитного поля, которая называется магнитной индукцией
В = М /р . (2)
Магнитная индукция есть вектор, направление которого совпадает с направлением нормали контура с током, свободно установившегося во внешнем магнитном поле(см.рис.2)
Поле вектора В можно представить с помощью силовых линий (см. рис. 2), как и поле вектора ; таким образом В является аналогом Е .Магнитная индукция в СИ измеряется в теслах: 1Тл=1Нм/1А×м2. Тесла равен магнитной индукции однородного поля, в котором на плоский контур с током, который имеет магнитный момент 1Ам2, действует максимальный вращающий момент, равный 1 Нм.
На контур с током, помещенный в магнитное поле с индукцией , действует вращающий момент . (3)
Величина его M = 
при имеем М = M = p B , при = 0 или = , M= 0.
Закон Ампера
Ампер нашел, что на элемент тока Id , помещенный в магнитное поле с индукцией , действует сила . (4)
Произведение I называют элементом тока, где - вектор, совпадающий с элементом участка тока и направленный в сторону, в которую течет ток.
8.3. Закон Био-Савара – Лапласа
Био, Савар и Лаплас установили закон, который позволяет вычислить магнитную ин дукцию поля, созданного элементом тока Id на расстоянии от него:
dB = , (5)
т.е. индукция магнитного поля, создаваемого элементом тока Id в точке А, (см. рис. 3), на расстоянии r от него, пропорциональна величине элемента тока и синусу угла a, равного углу между направлениями элемента тока Id и , а также обратно пропорциональна квадрату расстояния между ними; Гн / м - магнитная постоянная.
Закон Био-Савара – Лапласа в векторной форме имеет вид: d = . (6)
Закон Био-Савара – Лапласа позволяет вычислить магнитную индукцию поля любых систем токов, используя принцип суперпозиции магнитных поля = . (7)
Применим закон Био-Савара – Лапласа и принцип суперпозиции (7) к расчету магнитных полей следующих токов:
8.3.1. Поле прямого тока:
Рис. 4
| Из рис. 4 с учетом (6) находим, что d плоскости, в которой лежат d и ; далее можно найти ,откуда, принимая во внимание, что получаем . С учетом этого из (5) находим:
интегрируя последнее равенство, получаем:
|