Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Промышленные процессы термической переработки нефти и нефтяных фракций



2.2.1.Термический крекинг

Процесс термического крекинга тяжелых нефтяных остатков в последние годы в мировой нефтеперера­ботке практически утратил свое "бензинопроизводящее" значение. В последнее время этот процесс используется для термопод­готовки дистиллятных видов сырья для установок коксования и произ­водства термогазойля( сырья для последующего получения технического углерода (сажи)).

В качестве сырья установки термического крекинга предпочтительно используют ароматизированные высококипящие дистилляты: тяжелые газойли каталитического крекинга, тяжелую смолу пиролиза и экстракты селективной очистки масел.

При термическом крекинге за счет преимущественного протекания реакций дегидроконденсации парафино-нафтеновых углеводородов оьбразуются арены. Образующиеся при крекинге, а также содержащиеся в исходном сырье арены, подвергаются дальнейшей ароматизации.

Основными целевыми продуктами термического крекинга дистиллятного сырья являются термогазойль (фракция 200-480 °С) и дистиллятный крекинг-остаток — сырье установок замедленного коксования — с целью получения высококачествен­ного кокса, например игольчатой структуры. В процессе получают также газ и бензиновую фракцию.

Потребители сажевого сырья предъявляют повышенные требования к его ароматизованности и плот­ности. В термогазойле ограничиваются коксуемость, зольность и содержание смолисто-асфальтеновых веществ.

Термический крекинг дистиллятного сырья по технологическому оформлению установки практически мало чем отличаются от своих предшественников — установок двухпечного крекинга нефтяных остатков бензинового профиля. Это объясняется тем, что в связи с утратой бензинопроизводящего назначения кре­кинг-установок появилась возможность для использования их без суще­ственной реконструкции по новому назначению.

Ранее было установле­но, что при однократном крекинге не удается достичь требуемой глуби­ны термолиза тяжелого сырья из-за опасности закоксовывания змееви­ков печи и выносных реакционных аппаратов. Поэтому большим достижением в совершенствовании их технологии являлась разработка двухпечных систем термического крекинга, в которых в одной из печей проводят мягкий крекинг легко крекируемого исходного сырья, а во второй — жесткий крекинг более термостойких средних фракций термолиза.

На рис. 4 представлена принципиальная технологическая схема установки термического крекинга дистиллятного сырья, которая используется для производства вакуумного термога­зойля.

Исходное сырье после нагрева в теплообменниках подают в ниж­нюю секцию колонны К-3. Эта колонна разделена на две секции полуглухой тарелкой, которая позволяет перейти в верхнюю секцию только парам. Продукты конденсации паров крекинга в верхней секции накапливают­ся в аккумуляторе (кармане) внутри колонны. Потоки тяжелого сырья, отбираемые соответственно с низа колонны, а легко­го сырья из аккумулятора К-3, подают в змеевики трубчатых печей. В печь П-1 подают тяжелое сырье, где оно нагревается до 500оС, а легкое сырье направляют в печь П-2 где нагревают до температуры 550°С и далее два потока направляют для углубления крекинга в выносную реакционную камеру К-1.

 

Рисунок – 4 Принципиальная технологическая схема установки термического крекинга дистиллятного сырья.

I – сырье, II – бензиновая фракция на стабилизацию, III – тяжелая бензиновая фракция из К-4, IV – вакуумный погон, V – термогазойль, VI – крекинг остаток, VII – газы на ГФУ, VIII – газы и водяной парк вакуум - системе, IX – водяной пар.

 

Из камеры К-1 продукты крекинга затем подают в испаритель высокого давления К-2, а крекинг-остаток и термогазойль через редукционный клапан направляют в испаритель низкого давления К-4. Газы и пары бензино-керосиновых фракций направляют в колонну К-3.

С верха К-3 и К-4 уходящие газы и пары бензиновой фракции охлаждают в конденсаторе-холодильнике и подают в газосепараторы С-1 и С-2. Газы подают на разделение на газофракционирующую установку (ГФУ), а основное коли­чество бензиновой фракции отправляют на стабилизацию.

Крекинг-остаток, выводимый гудрона получено, % масс.: 5 – газ, 1.3 – головка стабилизации бензина, 20.1 – фракция стабильного бензина, 52.6 – термогазойль, 19.9 – крекинг остаток, 1.1 – потери.

2.2.2. Висбрекинг

Ввиду того, что получаемый гудрон, особенно в процессе глубоковакуумной перегонки, непосред­ственно не может быть использован как котельное топливо из-за высо­кой вязкости. При получении из гудронов товарного котельного топлива требуется использовать большое количество дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти.

Одним из способов неглубокой переработки гудронов является висбрекинг, который позволяет существенно понизить вязкость. Использование висбрекинга позволяет сократить расход разбавителя на 20-25 % масс.

Чаще всего сырьем для висбрекинга является гудрон, но возможна и переработка тяжелых нефтей, мазутов, даже асфальтов процессов деасфальтизации. Висбре­кинг проводят в менее жестких условиях, чем термокрекинг, ввиду того, что перерабатывают более тяжелое сырье, которое легче крекируется. При этом допускаемая глубина кре­кинга ограничивается началом коксообразования (температура 440-500°С, давление 1,4-3,5 МПа).

В нашей стране и за рубежом определились два основных направления в развитии висбрекинга. Это "печной" (или висбрекинг в печи с сокинг-секцией), в котором высокая температура (480-500 °С) сочетается с коротким временем пребывания (1,5-2 мин). Второе направление — висбрекинг с выносной реакционной камерой.

В висбрекинге с выносной реакционной камерой требуемая степень конверсии достига­ется при более мягком температурном режиме (430-450 °С) и длитель­ном времени пребывания (10-15 мин). Этот висбре­кинг более экономичен, так как при одной и той же степени конверсии тепловая нагрузка на печь ниже. При "печном" крекинге получается более стабильный крекинг-остаток с меньшим выходом газа и бензина, но зато с повышенным выходом газойлевых фракций.

На рис. 5 приведена принципиальная технологическая схема типовой установки печного висбрекинга производительностью 1 млн т гудро­на.

 

 

Рисунок – 5 Принципиальная технологическая схема установки висбрекинга гудрона

I – сырье, II – бензин на стабилизацию, III – керосино - газойлевая фракция, IV – висбрекинг остаток, V – газы на ГФУ, VI – водяной пар.

Гудрон (или остаточное сырье) прокачивают через теплооб­менники, где нагревают за счет тепла отходящих продуктов до температуры 300°С и направ­ляют в нагревательно-реакци­онные змеевики параллельно работающих печей. Продукты висбрекинга выводят из печей при температуре 500 °С и ох­лаждают подачей квенчинга (висбрекинг остатка) до темпе­ратуры 430 °С и направляют в нижнюю секцию ректифика­ционной колонны К-1. Парога­зовую смесь отводят с верха этой колонны, которую после ох­лаждения и конденсации в кон­денсаторах-холодильниках по­дают в газосепаратор С-1, где разделяют на газ, воду и бензи­новую фракцию. Часть бензина используют для орошения верха К-1. Основное количество направляют на стабилизацию.

Фрак­цию легкого газойля (200-350°С) из аккумулятора К-1 через отпарную колонну К-2 выводят и после охлаждения в холодильниках направляют на смешение с висбрекинг-остатком или выводят с установ­ки. Определенная часть легкого газойля используют для создания промежуточного циркуляционного орошения колонны К-1.

Высококипящий остаток из К-1 поступает самотеком в колонну К-3. За счет снижения давления с 0,4 до 0,1-0,05 МПа и подачи водяного пара в переток из К-1 в К-3 происходит отпарка легких фракций.

С верха К-3 выводится парогазовая смесь, после охлаждения и конденсации поступает в газосепаратор С-2. Газы из него направляют к форсункам печей, а легкую флегму возвращают в колонну К-1.

Тяжелую флегму из аккумулятора К-3 выводят и смешива­ют с исходным гудроном, направляемым в печи. С низа К-3 выводят остаток висбрекинга и после охлаждения в теплообменниках и холодильниках откачивают с установки.

Чтобы избежать закоксовывание реакционных змеевиков печей в них предусматривают подачу турбулизатора — водяного пара на участке, где температура потока достигает выше 430°С.

В результате висбрекинга гудрона западносибирской нефти получается, % масс.: 3.7 – газ, 2.5 – голова стабилизации бензина, 12 – бензиновая фракция, 81.3 – висбрекинг остаток + фракция легкого газойля, 0.5 – потери.

 

Замедленное коксование

Замедленное коксова­ние наиболее широкое используется для переработки тяжелых нефтяных остатков с выработкой продуктов. При этом другие разно­видности процессов коксования(периодическое коксование в кубах и коксование в псевдоожиженном слое) ограниченно применяют в промышленности..

 

Установка замедленного коксования используется для производства крупно-куско­вого нефтяного кокса. Нефтяной кокс в мире и в нашей стране являются сырьем дляпроизводства анодной массы и обожженных анодов для алюминиевой промышленности и графитированных электродов для электросталеплавления. Кроме того, нефтяной кокс приме­няют для изготовления конструкционных мате­риалов, при производстве цветных металлов, кремния, абразивных материалов. Нефтяной кокс также используется в химической и электротехнической промышленности, в космонавтике, в ядерной энергетике и др.

На установке замедленного коксования помимо кокса получают газы, бензиновую фракцию и газойлевые дистилляты. Образующиеся газы коксования или направляют на ГФУ (для извлечения пропан-пропиленовой и бутан-бутиленовой фракции) или используют в качестве технологического топлива. Бензиновые фракции имеют невысокие октановыми числа ( около 60 по моторному методу) и имеют низкую химическую стабильность (за счет непредельных соединений) и содержат до 0,5 % маc. серы. Поэтому получаемые бензиновые, а также дизельные фракции необходимо гидрооблагораживать для получения качественного топлива. Кроме того, коксовые дистилляты могут быть использованы как компоненты газотурбинного и судово­го топлив или в качестве сырья каталитического или гидрокрекинга, для производства малозольного электродного кокса, термогазойля.

В качестве сырья установок замедленного коксования используют остатки перегонки нефти (мазуты), гудроны, остатки деасфальтизации, экстракты очистки масел, остатки термока­талитических процессов, тяжелую смолу пиролиза, тяжелый газойль каталитического крекинга и др. За рубе­жом в качестве сырья для коксования используют каменноугольные пеки, сланцевую смолу, тяжелые нефти и др.

К нефтяным коксам в зависимости от назначения предъявляют различ­ные требования. В готовом коксе обычно контролируют: со­держание серы, золы, летучих, гранулометрический состав, пористость, истинную плотность, механическую прочность, микроструктуру и др.

Под термином "замедленное" понимают процесс коксования с особыми условиями работы реакционных змеевиков трубча­тых печей и реакторов (камер) коксования. В процессе замедленного коксования сырье предва­рительно нагревают в печи до высокой температуры (470-510 °С), а затем подают в необогреваемые, изолированные снаружи коксовые камеры, где коксование происходит за счет тепла, приходящего с сырьем. Во избежание закоксовывания змеевиков сырье быстро прокачивается через печь.

Замедленного коксование является непрерывным процессом по пода­че сырья на коксование и по выходу газообразных и дистиллятных продуктов, но периодическим по выгрузке кокса из камер. Обычно установки замедленного коксования имеют два отделения: нагревательно-реакционно-фракционирующее отделение, где осуществляется собственно технологический процесс коксования сырья и фракциони­рование его продуктов и отделение по механической обработке кокса, где осуществляется его выгрузка, сортировка и транспортировка.

На рис. 6 приведена принципиальная технологическая схема установки замедленного коксования. Сырье — гудрон или крекинг-остаток (или их смесь) нагревают в теплообменни­ках и конвекционных змеевиках печи и направляют на верхнюю каскад­ную тарелку колонны К-1. При этом часть сырья направляют на нижнюю каскадную тарелку для регулирования коэффициента рецикла, а под нижнюю кас­кадную тарелку этой колонны подают горячие газы и пары продуктов коксо­вания из коксовых камер. В процессе контакта сырья с восходящим потоком газов и паров продуктов коксования сырье нагревается (до температуры 390-405 °С), при этом низкокипящие его фракции испаря­ются. Тяжелые фракции паров конденсируются и смешиваются с сырьем, образуя так называемое вторичное сырье.

С низа колонны К-1 печным насосом забирают вторичное сырье и направляют в реакционные змеевики печей (их две, работают парал­лельно). Вторичное сырье нагревается в печах до 490-510°С и поступает через четырехходовые краны двумя параллельными потоками в две работающие камеры. В это время две другие камеры находятся в цикле подготовки. Горячее сырье, входя в низ камер, постепенно заполняет их. Ввиду того, что объем камер большой, время пребывания сырья в них также значительно и там про­исходит глубокий крекинг сырья. При этом пары продуктов коксования непрерывно ухо­дят из камер в колонну К-1. Утяжеленный жидкий остаток задерживается в камере. Жидкий остаток постепенно превращается в кокс.

 

 

Рисунок – 6 Принципиальная технологическая схема двухблочной установки замед­ленного коксования

I— сырье; II — стабильный бензин; III — легкий газойль; IV— тяжелый газойль; V — головка стабилизации; VI — сухой газ; VII — кокс; VIII- пары отпарки камер; IX — водяной пар

 

На установке замедленного коксования фракционирующая часть включает основную ректификаци­онную колонну К-1, отпарные колонны К-2 и К-3, фракционирущий абсорбер К-4 для деэтанизации газов коксования и колонну стабилиза­ции бензина К-5.

Важно отметить, что колонна К-1 разделена полуглухой тарелкой на две части: ниж­нюю, которая является как бы конденсатором смешения, и верхнюю, выполняющую функцию концентрационной секции ректификационных колонн. При этом в верхней части К-1 осуществляют разделение продуктов коксования на газ, бензин, легкий и тяжелые газой­ли. Температурный режим в колонне К-1 регулируется верхним острым и промежуточным циркуляционными орошениями. При этом легкий и тяжелый газойли выводят через отпарные колонны соответственно К-2 и К-3.

Образующиеся газы и нестабильный бензин из сепаратора С-1 направляют в фрак­ционирующий абсорбер К-4. При этом в верхнюю часть К-4 подают охлажден­ный стабильный бензин, а в нижнюю часть подводят тепло посредством кипятильника с паровым пространством. Сухой газ выводят с верха К-4. При этом с снизу колонны К-4 выводится насыщенный нестабильный бензин, который подвер­гают стабилизации в колонне К-5, где от него отгоняют головку, состо­ящую из пропан-бутановой фракции. Из колонны К-5 выводят стабильный бензин, охлаждают и очищают от сернистых соединений щелочной промывкой и направляют с установки в другие цеха. При этом коксовые камеры работают по циклическому графику. В коксовых камерах по­следовательно чередуются циклы: коксование, охлаждение кокса, выг­рузка его и разогрев камер. Как только коксовая камера заполнится примерно на 70-80 % по высоте, поток сырья с помощью переключающих кранов пере­водят в другую камеру. Затем заполненную коксом камеру продувают водя­ным паром для удаления жидких продуктов и нефтяных паров. Удаляе­мые из кокса продукты поступают вначале в колонну К-1. После того как темпе­ратура кокса понизится до 400-405 °С, поток паров отключают от колонны и направляют в скруббер (на рисунке не показан). Кокс охлаждают до 200оС водяным паром °С, после чего в камеру подают воду.

Охлажденный кокс выгружают камер гидравлическим методом. Для этого пласты кокса разрушают струей воды давлением 10-15 МПа. Над каждой камерой устанавливают буро­вые вышки высотой 40 м, предназначенные для подвешивания бурового оборудования. При этом на вышке закрепляют гидродолото, с помощью которо­го в слое кокса пробуривают центральное отверстие. Затем гидродоло­то заменяют гидрорезаком, снабженным соплами, из которых подают сильные струи воды, направляемые к стенкам камеры. Пере­мещаясь по камере гидрорезак, полностью удаляя со стенок кокс. Затем кокс поступает в отделение обработки и транспорти­ровки, где его дробят, сортируют на три фракции и транспортируют на склады.

Весь цикл изготовления партии кокса составляет около 48 часов.

После выгрузки кокса камеру, спрессовывают и прогревают сначала острым водяным паром, затем горячими парами продуктов коксования из работающей камеры до температуры 360-370 °С. Затем камеру переключают на рабочий цикл коксования.

Контрольные вопросы

1. Требования, предъявляемые к сырью термического крекинга.

2. Характеристика продукции термического крекинга..

3. Технологическая схема установки висбрекинга..

4. Характеристика сырья и продукции висбрекинга.

5. Технологическая схема установки замедленного коксования.

6. Характеристика сырья для установки замедленного коксования..

 

 

ТЕМА 3. ТЕРМОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА

Аннотация

Изучив представленный материал, студент, будет знать теоретические основы термокаталитических процессов, их особенности и назначение. Кроме того, студент будет знать принципиальные технологические схемы термокаталитических производств: каталитического крекинга и риформинга.

 



Просмотров 1684

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!