![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Теоретические основы термокаталитических процессов переработки нефти
Катализ играет важную роль в развитии современных химических процессов. До 90 % всей химической продукции мира изготавливается каталитическим путем. Катализ представляет собой многостадийный физико-химический процесс, сопровождающийся избирательным изменением механизма и скорости термодинамически возможных химических реакций веществом-катализатором, образующим с участниками реакций промежуточные химические соединения. При положительном катализе происходит увеличение скорости реакции под влиянием катализатора, а при отрицательном катализе происходит уменьшение скорости химических реакций. В процессе промежуточных химических взаимодействий с реагирующими веществами катализатор сохраняет свой состав. При этом катализатор не расходуется в процессе катализа. Катализаторы окислительно-восстановительного типа используют при гидрировании, дегидрировании, гидрогенолизе гетероорганических соединений нефти и др. К этим катализаторам относятся переходные металлы (с незаполненными d- или f-оболочками) первой подгруппы (Си, Ag) и восьмой группы (Fe, Ni, Со, Pt, Pd) периодической системы Д. И. Менделеева, их окислы и сульфиды, их смеси (молибдаты никеля, кобальта, ванадаты, вольфраматы, хроматы), а также карбонилы металлов и др. Для этих катализаторов характерен гомолитический катализ, когда химическое взаимодействие протекает по гомолитическому механизму Катализаторы ионных реакций используют в каталитических реакциях крекинга, изомеризации, циклизации, алкилирования, деалкилирования, полимеризации углеводородов, других химических и нефтехимических процессах. К этому виду катализаторов жидкие и твердые кислоты и основания, окислы алюминия, циркония, алюмосиликаты, цеолиты, ионообменные смолы, щелочи и др. Для этих катализаторов хатактерен гетеролитический катализ — в случае гетеролитической природы промежуточного взаимодействия. В процессах каталитического риформинга и гидрокрекинга используют бифункциональные катализаторы, состоящие из носителя кислотного типа (окись алюминия, алюмосиликаты, промотированные галоидами, цеолитом и др.) с нанесенным на него металлом — катализатором гемолитических реакций (Pt, Pd, Со, Ni, Mo и др.). Бифункциональный (сложный) катализ, включающий оба типа химического взаимодействия Гетерогенные катализаторы представляют собой твердые микропористые материалы (различной формы - шарики, цилиндрики и др.) с активными центрами (нанесенными металлами, солями металлов и др.). К гетерогенным катализаторам предъявляют следующие требования, они должны иметь: -высокую каталитическую активность; -достаточно большую селективность (избирательность) в отношении целевой реакции; -высокую механическую прочность к сжатию, удару и истиранию; -достаточную стабильность всех свойств катализатора на протяжении его службы и способность к их восстановлению, при регенерации; -хорошую воспроизводимость всех свойств катализатора, при простом производстве; -оптимальную форму и геометрические размеры, обусловливающие гидродинамические характеристики реактора; -небольшие экономические затраты на производство катализатора. Активность катализатора характеризуется количеством продукта, образующегося в единицу времени на единицу объема катализатора или реактора. Селективность катализатора характеризуется долей прореагировавших исходных веществ с образованием целевых продуктов. В нефтепереработке селективность условно выражают как отношение выходов целевого и побочного продуктов, например, как бензин/газ, бензин/кокс или бензин/газ + кокс. Стабильность катализатора это его способность сохранять свою активность во времени. От нее зависят продолжительность работы установок, интервал их межремонтного пробега, технологическое оформление, расход катализатора, материальные и экономические затраты и технико-экономические показатели процесса и др. Катализаторы в процессе интенсивной и длительной эксплуатации претерпевают физико-химические изменения, которые приводят к снижению или потере их каталитической активности. Другими словами. катализаторы подвергаются физической и химической дезактивации. Физическая дезактивация катализатора происходит под воздействием высокой температуры и водяного пара и при его транспортировке и циркуляции(происходит его спекание). Этот процесс сопровождается снижением удельной поверхности носителя катализатора и активного компонента (в результате рекристаллизации металла с потерей дисперсности). Химическая дезактивация катализатора вызывается: - отравлением его активных центров гетероатомными соединениями, содержащимися в сырье; - блокировкой его активных центров углистыми отложениями (коксом) или металлоорганическими соединениями, содержащимися в нефтяном сырье. Различают обратимую и необратимую дезактивации, в зависимости от того, восстанавливается или не восстанавливается каталитическая активность катализатора после его регенерации. Следует отметить, что даже в случае обратимой дезактивации катализатор в итоге «стареет» и приходится его заменять на новый.
Каталитический крекинг Цель каталитического крекинга заключается в получении высококачественного бензина с высоким октановым числом (по исследовательскому методу ОЧи = 90-92). В процессе каталитического крекинга образуются значительное количество газа, богатого бутан-бутиленовой фракцией. Эта фракция является хорошим сырьем для получения высокооктановых компонентов бензина. Установки каталитического крекинга являются поставщиком сырья для нефтехимической промышленности. Так из газойлей каталитического крекинга получают сажевое сырье и нафталин; тяжелый газойль является сырьем для производства высококачественного игольчатого кокса. Каталитический крекинг на алюмосиликатных катализаторах является одним из наиболее распространенных процессов в нефтеперерабатывающей промышленности и способствует значительному углублению переработки нефти. Важно отметить, что алюмосиликатные катализаторы как природные, так и синтетические являются высокопористыми веществами с высокой удельной поверхностью от 100 до 600 м2/г. В процессе каталитического крекинга наличие катализатора не вызывает новых термодинамически не оправданных реакций. Каталитический крекинг протекает при тех же температура, что и термический крекинг. Средняя температура в реакторе каталитического крекинга составляет около 540оС. При этом если при термическом крекинге время пребывания сырья в зоне реакции составляет минуты, то при каталитическом крекинге секунды (2-4 с). Продукты каталитического крекинга характеризуются следующим химическим составом: - бензиновая фракция содержит много изопарафинов и ароматических углеводородов; - газ получается тяжелый с высокой концентрацией бутанов и олефинов С3-С4; - газойлевые фракции, обогащенные полициклическими ароматическими соединениями. Основными факторами, определяющими эффективность каталитического крекинга, являются: свойства катализатора, качество сырья, температура, продолжительность контакта сырья с катализатором, кратность циркуляции катализатора. Чаще всего сырьем для каталитического крекинга является широкие вакуумные фракции (350-5000С). Кроме того, каталитическому крекингу можно подвергать сырье вторичного происхождения: газойли коксования, термического крекинга и гидрокрекинга. На рис. 7 приведена принципиальная технологическая схема установки каталитического крекинга Г-43-107. производительность по сырью 160 т/ч. Гидроочищенное сырье нагревается в теплообменниках и печи (до 3400С) смешивают с рециркулятом и водяным паром и направляют в узел смешения прямоточного лифт-реактора Р-1.
Рисунок 7 –Принципиальная технологическая схема установки каталитического крекинга. I— гидроочищенное сырье; II — газы на ГФУ; III — нестабильный бензин; IV— легкий газойль; V — тяжелый газойль; VI — декантат; VII — водяной пар; VIII— дымовые газы; IX — вода; X — воздух; XI — катализаторная пыль.
При контакте с регенерированным горячим цеолитсодержащим катализатором сырье испаряется и подвергается каталитическому крекингу в лифт реакторе (при температуре 540-5600С). Затем сырье с катализатором поступает в зону форсированного кипящего слоя в реактор Р-1. Продукты реакции отделяют от катализаторной пыли в двухступенчатых циклонах и направляют в нижнюю часть ректификационной колонны К-1 на дальнейшее разделение. Отработанный, закоксованный катализатор (с содержанием кокса 0.5-0.6%) из отпарной зоны Р-1 по наклонному катализаторопроводу направляют в зону кипящего слоя регенератора Р-2, где происходит выжиг кокса в режиме полного окисления оксида углерода (при температуре 640-6500С). Затем регенерированный катализатор (с содержанием кокса 0.005-0.1%) по нижнему наклонному катализаторопроводу поступает в узел смешения лифт - реактора. Воздух для регенерации катализатора нагнетают воздуходувкой в реактор Р-2. При этом дымовые газы проходят через внутренние двухступенчатые циклоны и затем их направляют на утилизацию теплоты в котел утилизатор и перед сбросов в атмосферу очищают от пыли на электрофильтрах. В колонне К-1 предусмотрено верхнее (острое) и промежуточное циркуляционное орошение (в средней и нижней части колонны). Легкий и тяжелый газойль отбирают через отпарные колонны К-2 и К-3. При этом нижняя часть колонны играет роль скруббера для каталитического шлама, который возвращают в отпарную зону реактора Р-1. В качестве рециркулята часть тяжелого газойля подают в узел смешения лифт - реактора. Смесь паров бензина, воды и газов выводят с верха колонны. Затем эту смесь охлаждают в холодильнике и разделяют в газосепараторе С-1. Газы направляют на установку ГФУ, нестабильный бензин на стабилизацию, а водный конденсат после очистки от сернистых соединений выводят с установки. Таким образом, в результате каталитического крекинга фракции 350-5000С (содержание серы 0.2%)получается, % мас.: 1.96 – сухой газ; 5.61 – пропан-пропиленовая фракция; 9.04 – бутан-бутиленовая фракция; 43.04 – бензиновая фракция (С5- 195оС); 28.0 – легкий газойль (дизельная фракция 195-350оС); 8.35 – тяжелый газойль (более 3500С); 4 – кокс + потери. Каталитический риформинг Каталитический риформинг реализован практически на всех нефтеперерабатывающих заводах. Основное назначение каталитического риформинга - получение высокооктанового компонента товарных автомобильных бензинов из низкооктановых тяжелых бензиновых фракций за счет их ароматизации. Еще одним важным назначением каталитического риформинга является получение индивидуальных ароматических углеводородов (бензола, толуола, ксилолов и этилбензола). В 1940 г. была пущена и получила широкое развитие на заводах США и Германии первая промышленная установка каталитического риформинга на алюмохромомолибденовом катализаторе (гидроформинг, проводимый под давлением водорода 4-4,5 МПа и температуре ~ 5400С) Первая промышленная установка каталитического риформинга с монометаллическим алюмоплатиновым фторированным катализатором — платформинг была разработана и введена в эксплуатацию фирмой «ЮОП». Важным этапом в развитии и интенсификации процессов риформинга являлись разработка фирмой этой фирмой наиболее передовой технологии каталитического риформинга с непрерывной регенерацией катализатора. Установки платформинга получили внедрение и в отечественной нефтепереработке. Наибольшее количество установок риформинга, действующих в России, со стационарным слоем катализатора. Наибольшее распространение получили установки бензинового риформинга. Важно отметить, что общая длительность простоя установки со стационарным слоем катализатора составляет от 20 до 40 суток в год. В период остановки производят регенерацию катализатора и ремонт установки. Сырье риформинга перед переработкой подвергают глубокой гидроочистки от гетероатомных соединений (серо-, азот и кислородсодержащих соединений). В случае вторичного сырья проводят гидрирование непредельных соединений. Принципиальная технологическая схема каталитического риформинга приведена на рис.8. Сырье после гидроочистки и осушки смешивают с циркулирующим водородсодержащим газом, подогревают в теплообменнике и в многокамернной печи П-1. После подогрева сырье направляют в реактор Р-1. Ввиду того, что реакция эндотермическая и в первом реакторе не доходит до требуемой глубины, реакционную смесь вновь подают в печь для подогрева и затем направляют в реактор Р-2. Из реактора Р-2 реакционная смесь поступает опять в печь для подогрева и затем ее направляют в последний реактор Р-3. Продукты реакции, поступающие из реактора Р-3, охлаждают в теплообменнике и холодильнике до 20-40оС и направляют в сепаратор высокого давления С-1 для отделения циркуляционного газа от катализата. При этом одну часть циркуляционного водородсодержащего газа после осушки цеолитами в адсорбере Р-4 направляют циркуляционную систему, а другую часть (избыток) выводят с установки. Избыток водородсодержащего газа подают на установку гидроочистки и другим потребителям.
Рисунок 8 –Принципиальная технологическая схема установки каталитического риформинга. I— гидроочищенное сырье; II — водородсодержащий газ; III — стабильный катализат; IV— сухой газ; V — головная фракция.
Нестабильный катализат после отделения водородсодержащего газа направляют в сепаратор низкого давления С-2. В сепараторе С-2 происходит разделение нестабильного катализата на жидкую и газовую фазу. Газообразные продукты и жидкие углеводороды подают во фракционирующий абсорбер К-1. В качестве абсорбента используют стабильный катализат. Нижнюю часть абсорбера подогревают горячей струей через печь П-2. В абсорбере поддерживается давление 1,4 МПа и температура внизу 165 и вверху 400С. Сверху абсорбера отделяют сухой газ. С низа абсорбера К-1 выводят нестабильный катализат, который, после подогрева в теплообменнике подают в колонну стабилизации К-2. Низ колонны К-2 подогревают горячей циркуляционной струей стабильного конденсата проходящей через печь П-2. Легкокипящую (головную) фракцию стабилизации после конденсации и охлаждения направляют в приемник С-3, откуда частично возвращают в К-2 на орошение, а избыток выводят с установки. Небольшое количество стабильного катализата после охлаждения в теплообменнике подают во фракционирующий абсорбер К-1 для орошения, а основную его часть выводят с установки. Типы установок каталитического риформинга приведены в табл. 1.
Таблица 1 - Типы установок каталитического риформинга
Контрольные вопросы 1. Требования, предъявляемые к сырью каталитического крекинга. 2. Характеристика продукции каталитического крекинга.. 3. Технологическая схема установки каталитического крекинга.. 4. Характеристика сырья и продукции риформинга. 5. Технологическая схема установки каталитического риформинга. 6. Катализаторы каталитического крекинга и риформинга.
![]() |