Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Статическая детерминированная модель с дефицитом



В рассматриваемой модели будем полагать наличие дефицита. Это означает, что при отсутствии запасаемого продукта, т.е. при J(t)=0 спрос сохраняется с той же интенсивностью r(t)=b, но потребление запаса отсутствует — b(t)=0, вследствие чего накапливается дефицит со скоростью b. График изменения уровня запаса в этом случае представлен на рис. 9. Убывание графика ниже оси абсцисс в область отрицательных значений в отличие от графика на рис. 8 характеризует накопление дефицита.

Из рис. 9 видно, что каждый период «пилы» разбивается на два временных интервала, т. е. Т=Т12, где Т1 - время, в течение которого производится потребление запаса, Т2 - время, когда запас отсутствует и накапливается дефицит, который будет перекрыт в момент поступления следующей партии.

Рис. 8

 

Необходимость покрытия дефицита приводит к тому, что максимальный уровень запаса s в момент поступления каждой партии теперь не равен ее объему n, а меньше его на величину дефицита n-s, накопившегося за время Т2 (см. рис. 8). Из геометрических соображений легко установить, что

(2.17)

В данной модели в функцию суммарных затрат С наряду с затратами C1 (на пополнение запаса) и С2 (на хранение запаса) необходимо ввести затраты С3 — на штраф из-за дефицита, т.е. .

Затраты C1, как и ранее, находим по формуле (2.11). Затраты С2 при линейном расходе запаса равны затратам на хранение среднего запаса, который за время потребления Т1 равен sT1/2; поэтому с учетом (2.7) и (2.5) эти затраты составят

(2.18)

При расчете затрат С3 будем считать, что штраф за дефицит составляет в единицу времени с3 на каждую единицу продукта. Так как средний уровень дефицита за период T2 равен (n-s)T2/2, то штраф за этот период T2 составит 1/2c3(n-s)T2, а за весь период с учетом (2.7) —

(2.19)

Теперь, учитывая (2.12), (2.18) и (2.19), суммарные затраты равны

(2.20)

Нетрудно заметить, что при n=s формула (2.19) совпадает с ранее полученной (2.8) в модели без дефицита.

Рассматриваемая задача управления запасами сводится к отысканию такого объема партии n и максимального уровня запаса s, при которых функция С (2.19) принимает минимальное значение. Другими словами, необходимо исследовать функцию двух переменных С(n,s) на экстремум. Приравнивая частные производные к нулю, получим после преобразований систему уравнений:

(2.21)

Решая систему, получаем формулы наиболее экономичного объема партии и максимального уровня запаса для модели с дефицитом[1]:

(2.22)

(2.23)

Величина

(2.24)

(2.27)

23. Матрица планирования транспортной задачи, учёт особых случаев (запрет на перевозку по коммуникации, ограничение пропускной способности, промежуточное складирование

Транспортная задача с ограничениями на пропускную способность решается с дополнительным ограничением: , где dij - пропускная способность звена (i, j) в единицу времени. Математическая модель задачи такова:

,

при ограничениях

Эта задача разрешима при выполнении условий

.

Для транспортной задачи с ограниченными пропускными способностями справедливы следующие условия оптимальности полученного решения:

Кроме транспортной задачи по критерию стоимости существует задача транспортного типа по критерию времени. Постановка такой задачи состоит в следующем.

Дана матрица времени (tij) k×l, где tij - время на перевозку груза из i-того пункта отправления в j-тый пункт назначения. Матрица перевозок грузов (xij) k×l, где xij - количество перевозимого груза из i-того пункта отправления в j-тый пункт назначения. Известно также наличие груза Mi и спрос на него Nj, . Требуется определить такой план перевозок, при котором весь груз будет доставлен потребителям в кратчайший срок.

Постановка транспортной задачи по критерию времени отличается от транспортной задачи по критерию стоимости лишь целевой функцией.

Если в задаче по критерию стоимости определялись минимальные транспортные издержки, то при решении задачи по критерию времени следует определить наименьший промежуток времени, за который груз будет доставлен потребителю. Решение такой задачи очень важно в случае доставки скоропортящегося продукта.

Исходный опорный план можно получить по правилам "северо-западного угла", "минимального элемента", приближенным методом. Далее просматриваем все занятые клетки и в них выбираем максимальное время t, за которое осуществляется опорный план перевозок, т.е. Т=max (tij), где клетки (i; k) занятые. Каждому плану перевозок будет соответствовать вполне определенное значение Т, зависящее от плана, т.е. T=f (x). Следовательно, нужно найти такой план доставки груза потребителям, для которого Т будет минимальным.

Определив максимальное значение Т для исходного плана, просматриваем ту клетку, для которой t=Т=max (tij). Например, такой клеткой является (p, q). Для этой клетки строится цикл, который включает в себя занятые и свободные клетки. Таких циклов может быть несколько. Однако при построении его следует учесть условия. Занятая клетка (p, q), для которой tiq = Т будет нечетной, следующая клетка по часовой или против часовой стрелки - четная, следующая - нечетная и т.д. Цикл состоит из двух полуциклов - четного и нечетного. Для нечетных клеток цикла обязательно должна быть загрузка больше нуля, а для четных - время меньше Т. Свободные клетки, для которых время tij> Т, прочеркиваются и в расчет не принимаются.

Построив цикл для разгрузочной клетки (p, q), для которой t (p, q) = Т, определяем наименьшую загрузку в нечетных клетках цикла. Полученное количество груза вычитается из грузов нечетных клеток и добавляется к числам четных клеток цикла. При этом может оказаться, что после смещения по циклу клетка (p, q) не разгрузится, тогда снова строится цикл и производится разгрузка клетки до тех пор, пока количество груза не станет равным нулю. После разгрузки клетки, имеющей максимальный промежуток времени, получаем новый план перевозок, для которого отыскивается разгрузочная клетка и снова производится процедура построения цикла и смещения груза по циклу. Процесс продолжается до тех пор, покуда можно будет строить разгрузочные циклы. В случае невозможности построить такой цикл в полученных занятых клетках плана выбираем максимальное время, которое и будет искомым по реализации оптимального плана.


 



Просмотров 599

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!