Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Эпигенетика детерминации пола



 

В случае детерминации пола у дрозофилы цепь эпигенных изменений расшифрована до молекулярного уровня. Можно сравнить основные принципы генетики пола у дрозофилы и у человека. Сравнение весьма уместно, ибо, напомню, хромосомные болезни у человека были на четверть века ранее открыты и смоделированы на дрозофиле.

У дрозофилы самки имеют при оплодотворении генотип XX, а самцы XY. В Х-хромосоме локализован основной ген-переключатель Sxl, способный под действием генотипического сигнала быть в двух альтернативных состояниях. У самок продукт гена всегда активен, у самцов — неактивен. Соответственно, самки имеют генотип Sxl+/ Sxl+, a самцы — Sxl0 /Y. Делеционные, инсерционные или точковые мутации "утраты функции" (loss of function) гена-переключателя Sxl в гомозиготе детальны у самок, но жизнеспособны у самцов. И, напротив, конститутивные мутации типа "приобретение функции" (gain of function), когда Sxl не способен переходить под действием сигнала в неактивное состояние, — летальны у самцов.

Переключатель Sxl имеет два промотора: ранний и поздний. При импульсной активации первого промотора под действием сигнала у самок синтезируется РНК-связывающий белок. Затем этот белок (по типу эпигена — раздел 4.6.) регулирует правильный сплайсинг собственной РНК с позднего промотора. В итоге синтезируется функционально активный белок SXL. Этот белок, в свою очередь, регулирует правильный сплайсинг и синтез функционально активного ДНК-связывающего продукта гена tra, transformer — первого в каскадной цепи пол-определяющих генов. У гомозиготных мутантных самок tra/tra происходит реверсия пола, а у самцов мутация никак не проявляется, ибо в норме у них ген не активен. Таким образом, активное состояние Sxl+ гена-переключателя передается по цепочке к генам, запускающим половую дифференцировку.

Еще на заре генетики было установлено, что сигналом для детерминации пола у дрозофил служит хромосомный баланс: соотношение половых хромосом и аутосом. В статье, красноречиво названной "Сигнал детерминации пола или как мухи считают до двух" Томас Клайн (dine, 1993) анализирует, современный смысл понятия "хромосомный баланс". В Х-хромосоме локализованы два особых гена (sisA и sisB), названных "нумераторы", которые кодируют ДНК-связывающие белки и доза которых имеет важное сигнальное значение для статуса гена-переключателя. Оба гена транскрипционно активны с самого начала развития и их продукты активируют Sxl во всех клетках сомы. Активация раннего промотора переключателя Sxl зависит от концентрации Sis-белков, количество которых в 2 раза больше у XX-эмбрионов, нежели у XY. Таким образом, несколько размытое понятие "хромосомный баланс" получает конкретное молекулярное истолкование. Оценивается число нумераторов через концентрацию их продуктов. Соответственно оценивается число Х-хромосом с нумераторами/

Если взять за основу эпигенетическую триаду: сигнал — восприятие сигнала геном-переключателем — поддержание выбранного состояния, то можно сопоставить механизмы детерминации пола у человека и дрозофилы. У обоих видов женский пол имеет конституцию XX, а мужской — XY. Однако, у дрозофилы возникающие иногда при нерасхождении половых хромосом особи генотипа XXY имеют женский пол, а у человека — мужской (синдром Клайнфельтера). Y-хромосома человека несет ген SRY, одно присутствие которого определяет развитие по мужскому типу (Lyon, 1993). Ген этот клонирован, показано, что он кодирует ДНК-связывающий белок и что повреждение гена ведет к реверсии пола у генотипически мужских особей XY.

До начала 90-х годов полагали, что присутствия нормального гена SRY необходимо и достаточно для детерминации мужского пола. Однако были обнаружены особи XX с реверсией пола, не несущие вовсе ДНК Y-хромосомы. Как объяснить их происхождение?

Критический анализ этой проблемы дан в работе группы французских генетиков (McElreavey, 1993). На основе изучения статуса гена SRY yпочти 100 индивидов XX с реверсией пола, а также родословных, где выщепляются особи с реверсией, пола авторы предложили "регуляторную каскадную гипотезу" определения пола у человека и других млекопитающих. В основе лежит известная схема с иерархией действующих генов: сигнальный ген (негативный регулятор) — основной ген-переключатель — гены, дифференцирующие пол по мужскому или женскому типу. Предполагается, что, пол-детерминирующий фактор SRY, найденный у самцов всех изученных млекопитающих, есть на самом деле сигнальный ген. Его продукт представляет собой ДНК-связывающий белок, который относится к группе белков, регулирующих транскрипцию. Согласно гипотезе, SRY усамцов подавляет транскрипцию или резко снижает активность ключевого гена-переключателя, обозначенного как Z. Но если у дрозофилы сигналом переключения состояния гена Sxl служит соотношение Х-хромосом и аутосом, то у человека ген SRY является доминантным геном-супрессором, подавляющим активность аутосомного переключателя Z, и тем самым сдвигающим развитие зиготы в сторону мужского пола. Таким образом, оказывается, что основной ген-переключатель, от которого зависит выбор полового развития, у человека еще не найден!

Пол-детерминирующее действие гипотетического гена Z учеловека принципиально сходно с аналогичным геном Sxl удрозофилы. В обоих случаях переключатель должен быть активен у самок и выключен у самцов. Данная гипотеза дает возможность объяснить обширный спектр отклонений в развитии пола и делать предсказания. Например, загадочное появление фенотипических мужчин с кариотипом XX и отсутствием гена SRY, но с тестикулярными тканями или истинных гермафродитов может быть связано с разного рода мутациями гена Z. С другой стороны, если произошла мутация в гене Z, которая делает его нечуствительным к ингибирующему действию SRY, z,insensitive, то следует ожидать реверсии пола среди мужских генотипов XY, SRY+; Z+/Zi . Подобные мутации (их называют конститутивными) должны быть доминантными и проявлять свое действие уже в гетерозиготе.

Действительно, недавно была описана группа пациентов генотипа XY со специфическими скелетными аномалиями и реверсией пола, которые имели разного рода мутации в аутосомном гене SOX9 (хромосома 17q). Эти мутации были доминантными, как и следовало ожидать в соответствии с гипотезой. Кроме того, продукт данного аутосомного гена также как и гена SRY относится к группе ДНК-связывающих белков и функционально активен в гонадных клетках Сертолли. Возможно, найдены два первых гена в каскадной эпигенетической цепи, контролирующей детерминацию пола у человека (Sinclair, 1995).

Установлено, что область белка SXL, ответственная за связывание с ДНК у млекопитающих эволюционно консервативна. Поэтому поиск ключевого гена-переключателя происходит и на модельных животных объектах. У свиней, коз, лошадей, например, описаны рецессивные аутосомные мутации интерсексуальности с исходно женским генотипом XX. Этого следует ожидать в случае мутации в гипотетическом ключевом гене Z (McElreavey, et al., 1993).

 

7.3.2. Инактивация Х-хромосомы как эпигенетическое изменение

 

Другим примером эпигенетических изменений, протекающих по известному сценарию сигнал — выбор одного из альтернативных состояний — поддержание, является инактивация одной из двух X-хромосом у самок млекопитающих. Путем инактивации одной из X-хромосом у самок млекопитающих происходит компенсация дозы генов, локализованных в Х-хромосомах. Молекулярный механизм X-хромосомной инактивации, цитологически установленной в 1961 году, оставался загадкой вплоть до недавнего времени (детальный обзор: Нестерова, Закиян, 1994). В 1996 году молекулярно-генетическими методами была подтверждена правильность ранее высказанной гипотезы, что в основе явления инактивации Х-хромосомы лежат разные транскрипционные состояния одного гена-переключателя (Penny, et al., 1996; Lyon, 1996).

В Х-хромосоме имеется центр инактивации Xic (X-inactivation centre), от которого в обе стороны распространяется сигнал инактивации Х-хромосомы в генотипе самок. В пределах этого центра есть ген, обозначаемый у человека как XIST, а у мышей — Xisi (X — inactive specific transcript). Если этот ген-переключатель в хромосоме транскрипционно активен (состояние Xist+), то в данной хромосоме запускается центр инактивации, и затем инактивация распространяется в обе стороны от центра на всю ее длину (так называемая цис-регуляция). В итоге Х-хромосома с активированным центром становится генетически инертной, и тем самым дозы сцепленных с полом генов у двух полов выравниваются (феномен дозовой компенсации).

Если ген XIST в данной Х-хромосоме "молчит", то она не инактивируется. Как же происходит переключение состояния локуса? Сценарий здесь принципиально сходен с тем, как переключается состояние гена, детерминирующего пол у дрозофил (у самок дрозофил, имеющих генотип XX, ген Sxl включен, а у самцов XY — выключен). С областью расположения центра инактивации Xic связаны три функции, контролируемые отдельными генетическими элементами: 1) оценка числа X-хромосом, которые должны быть инактивированы — "счетный механизм", 2) выбор конкретных Х-хромосом, в которых запускается работа центра и 3) распространение процесса инактивации на всю X-хромосому.

Предполагается, что в нормально работающей Х-хромосоме центр инактивации с геном XIST выключен. В каждой клетке имеется ограниченное количество супрессирующего фактора, который, связываясь с рецепторным участком центра инактивации, "заглушает" работу центра. Когда с помощью делеции был удален участок в 7 т. п. о. в первом экзоне гена Xist у мышей, то такие Х-хромосомы с нулевым аллелем Xist0 оставались всегда активными. У самок-гетерозигот Xist/Xist0 проявлялись только те сцепленные с полом мутации, которые находились в хромосоме с нефункциональным геном Xist0 (Penny D. G., et al., 1996). В норме Xist локус не кодирует белок, но с него считывается РНК размером в 15–17 т. п. о. Эта РНК остается в ядре, будучи ассоциированной с неактивной Х-хромосомой и выступает в роли сигнала для цис-инактивации соответствующей Х-хромосомы.

Таким образом, в пределах центра инактивации есть рецепторный участок, который чувствителен к соотношению Х-хромосом и аутосом. Если оно равно 1:2, то запускается работа гена Xist. Его РНК-транскрипт подавляет активность Х-хромосомы, в которой расположен работающий XIST(Xist) ген.

У млекопитающих известны случаи неслучайной инактивации X-хромосомы. У австралийских сумчатых инактивируется отцовская X-хромосома. А у межвидовых гибридов полевок рода Microtus обычно инактивируется та Х-хромосома, которая содержит блок гетерохроматина (Нестерова, Закиян, 1994). Нельзя исключить, что подобные отклонения не могут возникнуть при некоторых мутационных изменениях генома у человека.

 



Просмотров 467

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!