Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Геномный импринтинг и аномалии оплодотворения



 

Наиболее яркое выражение импринтинга у млекопитающих — это функциональная некомплементарность мужских и женских геномов. В начале 80-х годов в лаборатории английского эмбриогенетика М. Сурани (М. Surani) из Кэмбриджа в опытах на мышах разработал микротехнику, позволяющую производить удаление и трансплантацию пронуклеусов на уровне оплодотворенной яйцеклетки. После удаления мужского или женского пронуклеуса восстанавливали диплоидность путем подавления первого деления дробления цитохалазином (см. обзоры: Баранов, 1988; Solter, 1988). Развитие таких гиногенот и андрогенот останавливалось на самых ранних стадиях. Если гаплоидному андрогенетическому зародышу трансплантировать другой мужской пронуклеус, развитие шло только до стадии нейрулы.

Поразительные по красоте и убедительности опыты были произведены в той же лаборатории с искусственным получением триплоидов в оплодотворенной яйцеклетке, и затем с избирательным удалением либо женского, либо мужского дополнительного ядра. У готовой к оплодотворению яйцеклетки млекопитающих мейоз блокирован на одной из конечных стадий (у человека, к примеру, на стадии метафазы II), и образование второго полярного тельца (конечная стадия мейоза) происходит после начала проникновения спермия в ооплазму. При искусственном подавлении второго полярного тельца в момент оплодотворения получали триплоидные зиготы с тремя пронуклеусами, из которых два женских и один мужской. Затем диплоидный набор восстанавливали, удаляя либо один из женских, либо мужской пронуклеус. В первом случае развитие шло нормально, тогда как во втором случае (вариант гиногенеза) зародыш мог достигать периода органогенеза, но затем неминуемо погибал.

Эти и другие сходные опыты убедительно показали, что у млекопитающих нормальное развитие возможно только при сочетании мужского и женского геномов, и что эти геномы, имея один и тот же набор генов, эпигенетически различны. Существенно прикладное значение этих данных для понимания ряда аномалий в репродукции человека. Следует иметь в виду, что: а) триплоидия — самая частая геномная аномалия у человека; б) у человека при оплодотворении регулярно, с определенной частотой происходит естественный андрогенез; в) в основе злокачественного перерождения клеток трофобласта (хорионэпителиомы), лежат явления, связанные с эпигенетической наследственностью, геномным импринтингом.

Феномен импринтинга приводит к тому, что в клетках трофобласта преимущественно активен мужской геном. Поэтому партеногенетическое развитие останавливается прежде всего ввиду невозможности развития трофобласта. Выдвинута интересная гипотеза, что у женских особей млекопитающих риск хорионэпителиомы уменьшается вследствие инактивации в их ооцитах генов, необходимых для роста и развития трофобласта (Varmuza, Mann., 1992). Импринтинг — это как бы механизм защиты самок от собственных яйцеклеток, у которых таким образом блокируется партеногенез.

Первое деление оплодотворенной зиготы является и первым делением созревания, так что особых сигналов к началу развития нет. Партеногенез и разные варианты оплодотворения и развития встречаются у большинства групп животных. Чемпионом, видимо, является палочник рода Bacillus, у которого, как обсуждалось в разделе 2.2.3 (рис. 1) в естественных условиях встречаются пять вариантов стратегии размножения: обычное половое, гибридогенез, партеногенез, гиногенез и андрогенез.

Относительно нормальным вариантом бесполого размножения у человека можно рассматривать образование из одной зиготы двух и более близнецов (монозиготные близнецы). На пути других вариантов размножения у млекопитающих в процессе эволюции возникли барьеры. Но они не абсолютны. В последние 15–20 лет выяснилось, что у человека достаточно регулярно происходит андрогенез в двух его вариантах — диспермия и диандрия. Однако это приводит к аномалиям репродукции и развития в силу хромосомного и геномного импринтинга.

Среди аномалий кариотипа, приводящих к спонтанным абортам, триплоидия после трисомии и моносомии занимает третье место (Назаренко, 1993). Триплоидия — наиболее частая геномная аномалия. С нею связаны 1,2% всех клинически распознаваемых беременностей и около 6% всех спонтаных абортов в первом триместре беременности (Lindor, et al., 1992). По данным исследования С. А. Назаренко (1993), в Томской области среди 200 спонтанных абортусов было найдено 12 случаев триплоидии (6%) и 5 диплоидно-тетраплоидных абортусов. Анализ происхождения дополнительного хромосомного набора у триплоидов оказался совершенно неожиданным и непредсказуемым. Примерно у 80% триплоидов дополнительный набор хромосом имеет отцовское происхождение.

Результат развития резко различен в зависимости от источника дополнительного набора хромосом. Эмбриогенез, хотя и аномальный, происходит только у тех триплоидных продуктов оплодотворения, у которых находятся два материнских набора и один отцовский. В случаях же диспермии, когда дополнительный набор хромосом пришел от отца, зародыш не развивается, а происходит кистозное разрастание ворсинок хориона (производных трофобласта), называемое пузырным заносом (hydatidiform mole или "гидатидиформный моль").

Цитогенетический анализ заносов принес новые неожиданности. Частота заносов довольно ощутима и в США составляет 1:500 родов, причем для женщин в возрасте старше 40 лет риск возрастает до 9% (Lindor, et al., 1992). Заносы по морфо-эмбриологическим критериям удалось разделить на две группы: частичные и полные. В первом случае гидрофобные разрастания захватывают лишь часть ворсинок. В случае же полных заносов не образуется низародыш, ни какие-либо эмбриональные ткани. Вместо них наблюдаются скопления наполненных жидкостью ворсинок хориона, напоминающие виноградные гроздья. Эти образования абортируются, однако отдельные клетки из них могут быть занесены кровотоком в другие ткани и органы и привести к злокачественному росту.

По данным С. А. Назаренко (1993), среди около 200 абортусовбыло найдено 4 случая полных и 8 частичных заносов, общая частота примерно 6%. Частичные заносы имеют обычно триплоидный кариотип с двумя разными отцовскими наборами (андрогенная триплоидия). Тогда как полные заносы имеют диплоидный набор хромосом, причем оба набора оказываются отцовскими по своему происхождению. То есть, налицо феномен регулярно происходящего естественного андрогенеза у человека! Здесь в полной мере проявляются феномен импринтинга и разные эпигенетические потенции мужского и женского геномов. Диплоидный андрогенез у человека, происходит двумя путями: 1) диспермия, когда зигота образуется при слиянии двух попавших в яйцеклетку спермиев — таковы около 25% всех полных заносов; 2) андрогения, в остальных 75% случаев, когда проникший в ядро мужской пронуклеус претерпевает дополнительное митотическое деление и затем оба митотических гаплоидных продукта сливаются, восстанавливая диплоидию, в итоге образуются так называемые "гомозиготные" заносы. Они имеют генотип либо 46,ХХ, либо 46,XY.

Ниже приведены обобщенные сведения о характере развития зиготы при разных вариантах оплодотворения. Эти данные ясно указывают на действие импринтинга и эпигенетическую некомплементарность женских и мужских геномов (Ben-Shetrit A., et al., 1995).

Анализ цитогенетики, а в будущем и молекулярной генетики, разных форм заноса в целях пренатальной диагностики очень важен. При полном заносе риск хорионэпителиомы чрезвычайно велик, при частичном заносе риск такой же, как в норме. Для установления дифференцированного диагноза и выбора правильной формы лечения С. А. Назаренко (1993) разработал схему комплексного обследования беременных женщин при подозрении на пузырный занос.

Открытие естественного андрогенеза у человека ставит перед медицинскими генетиками, специалистами в области репродукции человека и педиатрами ряд проблем, которые еще ждут своего решения на основе современных методов. Каков конкретный механизм нарушений развития при триплоидии и пузырных заносах? Какую роль играет изменение в соотношении Х-хромосом и аутосом и как происходит в этом случае процесс Х-хромосомной инактивации? Как проявляется хромосомный и генный импринтинг в случае частичных и полных заносов, какова роль генотипа в аномалиях воспроизведения?

Оплодотворение — это сложный многоступенчатый процесс, в который вовлечены гены, действующие уже на уровне гамет. Имеются косвенные данные о наличии наследственных факторов, которые передаются через отца функционируют в процессе оплодотворения в мужских гаметах и повышают вероятность диатермии и андрогении. На фенотипическом уровне это приводит к специфической аномалии воспроизведения, когда в некоторых родословных наблюдается прямое отцовское влияние на склонность к рождению близнецов с одновременным частичным бесплодием. В этих же родословных ожидается появление третьего типа близнецов: не моно- или дизиготных, а полуторазиготных; в то же время среди сибсов близнецов возможны первичные химеры (Голубовский, Голубовская, 1984; Голубовский, 1984, 1986).

Вариант развития зиготы Ткань трофобласта Эмбрион Особенности развития
Норма Норма Норма Быстрый рост плаценты
Полный пузырный занос (диспермия и диандрия) Гиперплазия Отсутствует Очень быстрый рост плаценты; риск хориокарциномы в 4000 раз выше нормы
Тератома яичника; диплоидный гиногенез Отсутствует Дезорганизация Рост эмбриональных тканей разных типов
Частичный пузырный занос; андрогенная триплоидия Гиперплазия Рост замедлен, деформации Плацента растет быстрее, чем в норме, но хориокарцинома не образуется
Триплоидия; два материнских генома Рост замедлен Рост замедлен, множественные аномалии Раннее спонтанное абортирование

 

Импринтинг хромосом и генов

 

Патогенез некоторых наследственных аномалий связан с импринтингом определенных хромосом и генов (Сапиенца К., 1990). Наиболее изученным примером заболеваний, этиологически связанных с импринтингом, являются синдромы Прадера-Вилли и Ангельмана. Оба синдрома обусловлены изменениями дозы и противоположным импринтингом одного и то же района длинного плеча хромосомы 15. Делеция этого сегмента в материнской хромосоме, как и отцовская дисомия по хромосоме 15 (то есть когда обе хромосомы 15 у пациента от отца) приводят к синдрому Ангельмана (резкие судорожные движения, умственная отсталость, неадекватная смешливость). Напротив, дисомия материнской хромосомы 15 и делеция отцовской копии сегмента приводят к синдрому Прадера-Вилли (умственная отсталость, ожирение, низкий рост и непропорционально малый размер рук и ног). Эти два сопряженных в цитогенетическом смысле заболевания могут быть связаны с реципрокными различиями в импринтинге двух соседних генов, расположенных в районе сегмента 15q11-13. Один из генов, причастных к развитию синдрома Прадера-Вилли, был клонирован у человека и у мышей. Он кодирует один из полипептидов ядерного рибонуклеопротеина, вовлеченного в передачу сигнала между нейоронами. Ген имеет длину в 25 т. н. п., включает 10 экзонов. Он активно экспрессируется на хромосоме отцовского происхождения, но метилирован на материнской хромосоме (Пузырев, Степанов, 1997).

Использование трансгенных модельных животных, главным образом, мышей, где изучаемый ген, сцепленный с известным геном-репортером (его присутствие определяется по специфической окраске) и поставленный под контроль индуцируемого промотора (например, с помощью теплового шока), искусственно вводится в геном определенной линии, дало новые большие возможности для изучения импринтинга. На мышах установлен противоположный импринтинг двух соседних генов Igf2 и Н19 (Peterson, Sapienza, 1993: Ben-Shetrit, et al., 1995). Изменение характера активности гена Igf2 (инсулино-подобный ростовой фактор) драматически влияло на ход самых ранних этапов развития. В начальных стадиях развития материнский ген выключен и активен лишь отцовский ген. У мышей был получен дефектный аллельный вариант гена Igf, и показано, что если в гетерозиготу эта мутация привнесена со стороны отца, рождаются мыши-карлики с 40% редукцией веса тела. Тот же самый ростовой дефект наблюдается у мутантных гомозигот.

Аналогичный ген у человека, обозначаемый как IGF-I1, экспрессируется лишь в отцовской хромосоме. Продукт этого гена связан с пролиферацией клеток плаценты. Ген высокоактивен в тканях трофобласта из пузырного заноса. Критическую роль в период имплантации яйцеклетки у человека играет активность другого гена H19. Он тесно сцеплен с геном IGF-II (район 11р15.5), но импринтируется противоположным образом — активен материнский аллель.

Получены данные об участии импринтинга в возникновении определенных видов детских раковых заболеваний — эмбриональной рабдосаркомы, опухоли Вильмса (рак почек) и остеосаркомы. В этих случаев первичным механизмом в патогенезе является инактивация рецессивного антионкогена именно в отцовской хромосоме (Сапиенца, 1990). Импринтинг причастен и к хорее Гентингтона. Это неизлечимое нейродегенеративное заболевание, наследуемое доминантно, обычно поражает людей старше 40 лет. Однако, примерно в 10% случаев болезнь развивается еще в детском возрасте. При этом 9 из 10 больных детей получают мутантный ген от отца.

В процессах импринтинга предложено разделять гены импринтируемые и импринтирующие, то есть те, которые подвергаются импринтингу и те, которые контролируют импринтинг (Peterson, Sapienza, 1993). К последним относятся гены, продукт которых представляет собой ДНК-связывающие белки. Они присоединяются к рецепторным участкам импринтируемых генов и влияют на степень их метилирования или степень компактизации данного сегмента хромосом. Несомненна связь феномена импринтинга с известным в генетике эффектом положения генов.

 

7.4. Новый тип нестабильных мутаций

 

В рамках мобильной генетики установлены разные случаи направленных изменений генов. Хорошо известны регулярно происходящие в ходе онтогенеза перемещения иммуноглобулиновых генов при развитии В-лимфоцитов — продуцентов антител. Механизм такого рода перемещений состоит в локальных рекомбинациях по сигнальным повторенным последовательностям (Хесин Р. Б., 1984).

Вообoе, можно считать за правило, что в пределах участков с повторенными блоками ДНК наблюдаются аномалии основных матричных процессов — транскрипции, репликации или трансляции, а также аномалии основных генетических процессов — рекомбинации, репарации и сегрегации (Прокофьева-Бельговская А. А., 1986; Хесин Р. Б., 1984). В отношении поведения подобных районов хромосом можно говорить об автогенезе на уровне ДНК (см. обсуждение в разделах 5.1 и 5.6). Хорошо изученны, например, упорядоченные изменения, связанные с повторами при селекции клеток в условиях повышенных доз цитостатиков. В этом случае можно предсказать последовательность событий. Участок хромосомы, где расположен ген устойчивости многократно умножается, амплифицируется, затем блоки тандемно повторенных генов могут отделиться от хромосомы и оказаться в цитоплазме как кольцевые плазмиды или линейные микрохромосомы (см. раздел 4.4.1).

Помимо Alu элементов геном человека насыщен микросателлитными последовательностями, состоящими из тандемных ди-, три- и тетрануклеоттидных повторов. Число их в геноме достигает 30–40 тыс., они встречаются в среднем через каждые 1000–1500 нуклеотидов (Nadir, et al., 1996; Баранов, 1996). В последнее десятилетие обнаружено, что нестабильное поведение некоторых генов, приводящих к довольно распространенным наследственным заболеваниям, связано со скоплением в кодирующих районах соответствующих генов определенных тринуклеотидных повторов. Среди этих заболеваний — мышечная дистрофия Дюшена, болезнь Гентингтона, синдром ломкой Х-хромосомы. На примере последнего дефекта мы разберем некоторые интересные особенности этого типа нестабильности.

 



Просмотров 960

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!