Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Математические схемы моделирования систем



МОДЕЛИРОВАНИЕ СИСТЕМ

 

РАБОЧАЯ ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

 

 

Факультеты ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЙ, ЗДО

 

Специальность 220201 - УПРАВЛЕНИЕ И ИНФОРМАТИКА В

ТЕХНИЧЕСКИХ СИСТЕМАХ

Направление бакалавриата 220200 - АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ

 

 

Вологда

 

 

УДК 62.529

 

 

Моделирование систем: рабочая программа, методические указания для самостоятельной работы и контрольные задания. - Вологда: ВоГТУ, 2008. - 22 с.

 

Приводится рабочая программа дисциплины с указанием тематики основных разделов, методические указания со ссылками на источники информации, контрольные задания и список литературы.

Предназначена для студентов дневной и заочной форм обучения, обучающихся по направлению: 220200 – автоматизация и управление и специальности 220201 – управление и информатика в технических системах и по направлению бакалавриата: 220200 – автоматизация и управление.

 

Утверждено редакционно-издательским советом ВоГТУ

 

Составитель: В.Н. Тюкин, канд. техн. наук, доцент

 

Рецензент: Е.В. Несговоров, канд. техн. наук, доцент

кафедры УиВС ВоГТУ

 

За основу программы приняты требования Государственного образовательного стандарта высшего профессионального образования к минимуму содержания и уровню подготовки инженеров по специальности 210100 - управление и информатика в технических системах, введенного с 10.03.2000 г.

Требования к знаниям и умениям по дисциплине

В результате изучения дисциплины студенты должны:

1. Студент должен иметь представление:

- о модели и моделировании;

- о роли моделирования при исследовании, проектировании и эксплуатации систем;

- о назначении ЭВМ при моделировании систем;

- о программных и технических средствах моделирования систем.

2. Студент должен знать:

- назначение и требования, предъявляемые к модели;

- классификацию видов моделирования систем;

- принципы подхода в моделировании систем;

- математические схемы моделирования систем;

- основные этапы моделирования систем.

3. Студент должен уметь:

- получать математические модели систем;

- проводить формализацию и алгоритмизацию процесса функционирования систем;

- строить концептуальные и машинные модели систем;

- получать и интерпретировать результаты моделирования.

Требования к минимуму содержания дисциплины

Классификация моделей и виды моделирования; примеры моделей систем; основные положения теории подобия; этапы математического моделирования; принципы построения и основные требования к математическим моделям систем; цели и задачи исследования математических моделей систем; общая схема разработки математических моделей; формализация процесса функционирования системы; понятие агрегатной модели; формы представления математических моделей; методы исследования математических моделей систем и процессов; имитационное моделирование; методы упрощения математических моделей; технические и программные средства моделирования.

 

Т а б л и ц а 1

Распределение часов учебного плана по формам обучения и видам занятий

Виды занятий Очное обучение Заочное обучение
  сем. 7   всего час сем. 9   всего час.
Лекции    
Практические занятия        
Лаб. работы    
Самост. работа    
Всего    
Итоговый контроль з, э.     з, э, 2 к.р.    

 

Т а б л и ц а 2

Распределение часов самостоятельной работы студента по видам работ

 

Виды работ Очное обучение Заочное обучение
  норма вре-мени   сем. 7   всего часов норма вре-мени   сем.9   всего час.
Подготовка к лекциям 0,4   1,2  
Подготовка к практ. занятиям Подготовка к лаб. раб Изуч.доп.лит 0,35     0,25   -         -     0,25   - -         -      
Выполнение контрольной работы - -            
Всего        

 

ПРОГРАММА КУРСА

 

ВВЕДЕНИЕ

 

В.1. Современное состояние проблемы моделирования систем.

В.2. Использование моделирования при исследовании, проектировании и

управлении систем.

 

Литература : [5] стр. 4-6.

 

 

1. ОСНОВНЫЕ ПОНЯТИЯ МОДЕЛИРОВАНИЯ СИСТЕМ

 

1.1. Определение модели и моделирования. Требования, предъявляемые к модели. Назначение модели.

1.2. Принципы подхода в моделировании систем.

1.3. Классификация видов моделирования систем.

1.4. Возможности и эффективность моделирования систем на вычислительных машинах.

 

Литература : [5] стр. 6-34.

 

 

2. МАТЕМАТИЧЕСКИЕ СХЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ

 

2.1. Основные подходы к построению математических моделей систем. Математическая схема общего вида.

2.2. Непрерывно-детерминированные модели (D - схемы).

2.3. Дискретно-детерминированные модели (F - схемы).

2.4. Дискретно-стохастические модели (Р - схемы).

2.5. Непрерывно-стохастические модели (Q - схемы).

2.6. Обобщенные модели (A - схемы).

 

Литература : [5] стр. 35-67, [9] стр.168-180.

 

 

3. ФОРМАЛИЗАЦИЯ И АЛГОРИТМИЗАЦИЯ ПРОЦЕССА

ФУНКЦИОНИРОВАНИЯ СИСТЕМ

 

3.1. Последовательность разработки и машинной реализации моделей систем.

3.2. Построение концептуальной модели системы и ее формализация.

3.3. Алгоритмизация модели и ее машинная реализация.

3.4. Получение и интерпретация результатов моделирования.

 

Литература : [5] стр. 68-89.

 

 

4. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ

 

4.1. Канонические формы моделей динамических систем и методы их исследования.

4.2. Имитационное моделирование.

4.3. Статистическое моделирование.

4.4. Программные и технические средства моделирования систем.

 

Литература: [1, 2, 3, 4, 5, 6, 9, 12, 13].

 

 

ЦЕЛЬ КУРСА

 

“Понять - значит построить модель”.

У.Томсон (Кельвин)

 

Реальные производственные объекты представляют собой, как правило, большие системы, исследование которых является весьма сложной задачей. Основной целью курса является выработка методического подхода к задаче моделирования больших систем и систем управления ими. Эта основная задача может быть разделена на ряд подзадач, также являющихся целями курса:

- знакомство с методами анализа и принципами подхода к моделированию систем;

- изучение основ математического моделирования систем;

- изучение принципов и аппарата моделирования систем;

- знакомство с методами моделирования в проектировании и эксплуатации систем;

- изучение программных и технических средств моделирования систем;

- приобретение практических навыков построения моделей больших систем и методов обработки результатов моделирования.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Курс “Моделирование систем управления” должен дать студенту современный мощный рабочий инструмент инженера для эффективной разработки и эксплуатации автоматизированных производственных систем. Именно моделирование является средством, позволяющим без капитальных затрат решить проблему построения больших систем, к которым относится и современное автоматизированное производство.

Важность изучаемого курса заключается также в овладении приемами и технологией практического решения задач моделирования процессов функционирования систем на ЭВМ.

Студенты должны изучить материал курса в основном самостоятельно. По наиболее сложным вопросам курса, а также по вопросам, недостаточно освещенным в литературе, читаются лекции. Практические навыки по моделированию студенты получают на практических и лабораторных занятиях. Кроме того, в процессе изучения курса, студенты заочного обучения выполняют контрольную работу.

ВВЕДЕНИЕ

Изучение курса следует начать с ознакомления с современным производством, которое можно рассматривать как сложную систему взаимосвязанных и взаимодействующих элементов, в которой в качестве технологического объекта управления выступает материально-производственная система, а роль регулятора выполняет информационно-управляющая система. Повышение эффективности реализации процессов управления в производстве требует широкого внедрения автоматизированных систем управления, создаваемых с применением экономико-математических методов и средств информационно-вычислительной техники. В настоящее время полное и всестороннее исследование автоматизированных систем управления на всех этапах разработки, начиная с обследования объекта управления и составления технического задания на проектирование и кончая внедрением системы в эксплуатацию, невозможно без методов моделирования на ЭВМ.

Необходимо уяснить, что методологической основой моделирования является диалектико-материалистический метод познания и научного исследования. Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса.

Основными принципами моделирования являются [3].

Принцип информативной достаточности. Определяет уровень априорных сведений, при котором может быть создана адекватная модель.

Принцип осуществимости. Определяется вероятностью достижения цели моделирования за конечное время.

Принцип множественности моделей. Создаваемая модель должна отражать в первую очередь те свойства реальной системы, которые влияют на выбранный показатель эффективности.

Принцип агрегирования. Модель объекта представлять из агрегатов (подсистем), которые пригодны для описания стантартными математическими схемами.

Принцип параметризации. Модель должна иметь в своем составе подсистемы, характеризующиеся параметрами.

 

Основные понятия моделирования систем

 

“Определите значение слов,

И вы избавите человечество

От половины его заблуждений”.

Р.Декарт

 

Изучая этот раздел важно уяснить основные понятия, определения, цели и принципы моделирования.

Модель это изображение оригинала на основе принятых гипотез и аналогий, а моделирование - представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью.

Основное требование которому должна удовлетворять модель адекватность объекту. Адекватность модели зависит от цели моделирования и принятых критериев. Модель адекватна объекту, если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах.

Моделирование решает задачи изучения и исследования объектов, предсказания их функционирования, синтеза структуры, параметров и алгоритмов поведения.

При управлении модели позволяют оценивать ненаблюдаемые переменные процесса, прогнозировать состояние процесса при имеющихся или выбираемых управлениях и автоматически синтезировать оптимальные стратегии управления.

При проектировании и эксплуатации автоматизированных систем возникают многочисленные задачи, требующие оценки количественных и качественных закономерностей процессов функционирования систем, проведения структурного, алгоритмического и параметрического синтеза. Решение этих проблем в настоящее время невозможно без использования различных видов моделирования, что обусловлено особенностями больших систем, такими как сложностью структур, стохастичностью связей между элементами и внешней средой, неоднозначностью алгоритмов поведения, большом количестве параметров и переменных, неполнотой и недетерминированностью исходной информации. Математическое моделирование позволяет существенно уменьшить время проектирования, во многих случаях позволяет найти оптимальное решение, исключить метод натурных проб и ошибок, перейти к параллельному процессу проектирования.

В настоящее время при анализе и синтезе больших систем получил развитие системный подход, предполагающий последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды. Модель в этом случае создается под поставленную проблему, а моделирование заключается в решении проблемы цели, проблемы построения модели, проблемы работы с моделью. Для правильно выбранной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы не существенные для данного исследования.

В основе классификации видов моделирования систем лежат различные признаки, такие как степень полноты модели, характер математического описания. Важное место занимает математическое моделирование, представляющее собой процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получить характеристики рассматриваемого реального объекта. Математическое моделирование включает в себя аналитическое и имитационное. Имитационное моделирование основано на прямом описании моделируемого объекта, используя структурное подобие объекта и модели, т.е. каждому существенному с точки зрения решаемой задачи элементу объекта ставиться в соответствие элемент модели.

Техническим средством решения инженерных задач на базе моделирования является ЭВМ. Машинный эксперимент с моделью дает возможность исследовать процесс функционирования в любых условиях, сокращает продолжительность испытаний по сравнению с натурным экспериментом, обладает гибкостью варьирования параметров, структуры, алгоритмов моделируемой системы, является единственным практически реализуемым методом исследования процесса функционирования систем на этапе их проектирования.

Вопросы для самопроверки

1.Что такое модель и моделирование ?

2.Сформулируйте основные требования предъявляемые к модели.

3.Какова роль моделирования при исследовании и проектировании систем и управлении?

4.Дайте определения системы, внешней среды, функционирования системы.

5.В чем смысл системного подхода в моделировании ?

6.Перечислите признаки классификации видов моделирования систем.

7.Расскажите о математическом моделировании и его видах.

8.В чем отличие аналитического и имитационного моделирования ?

9.Что такое кибернетическое моделирование ?

10.Роль и назначение ЭВМ при моделировании.

 

Математические схемы моделирования систем

 

“Высшее назначение математики -

Находить порядок в хаосе,

Который нас окружает “.

Н.Винер

 

При изучении этого раздела прежде всего необходимо обратить внимание на понятия математических схем моделирования как общего вида, так и типовых.

Математическую схему определяют как звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды, т.е. имеет место цепочка “описательная модель - математическая схема - математическая модель”. Математическая схема позволяет рассматривать математику не как метод расчета, а как метод мышления, как средство формулирования понятий, что является наиболее важным при переходе от словесного описания системы к формальному представлению процесса ее функционирования в виде некоторой математической модели.

Модель объекта моделирования, т.е. систему, можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества : совокупность входных воздействий на систему, совокупность воздействий внешней среды, совокупность внутренних (собственных) параметров системы и совокупность выходных характеристик системы. Входные воздействия, воздействия внешней среды, внутренние параметры являются независимыми ( э к з о г е н н ы м и) переменными, а выходные характеристики системы являются зависимыми (э н д о г е н н ы м и ) переменными. Математическая схема моделирования общего вида задается оператором, который преобразует экзогенные переменные в эндогенные.

В практике моделирования пользуется типовыми математическими схемами, которые не обладают общностью, но имеют преимущества простоты и наглядности. К ним относятся детерминированные, стохастические и агрегатные типовые модели. В качестве детерминированных моделей используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретное время - разностные уравнения и конечные автоматы. В качестве стохастических моделей для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем - системы массового обслуживания. Агрегатные модели отображают системный характер объектов, которые расчленяются на конечное число частей, сохраняя связи, обеспечивающие взаимодействие частей.

Типовые математические схемы (D- ,F- ,P- ,Q- ,A-) позволяют формализовать достаточно широкий класс больших систем, с которыми приходится иметь дело в практике исследования и проектирования производственных задач.

Вопросы для самопроверки

1.Какова роль математической схемы моделирования ?

2.Что представляет собой математическая схема общего вида ?

3.Назовите основные формы представления непрерывно-детерминированных моделей.

4.Дайте описание дискретного конечного автомата.

5.Перечислите способы задания работы F - автоматов.

6.Каким образом задается вероятностный автомат.

7.Что представляет собой СМО? Назовите основные элементы СМО.

8.Что такое транзакт?

9.Раскажите о символике Q-схем. Как графически изображаются : источник заявок, канал обслуживания, накопитель, клапан, потоки событий. Приведите пример изображения СМО в символике Q - схем.

10.Какова структура агрегатной системы ?

 

 



Просмотров 1817

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!