Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



МЕДИАТОРЫ ПЕРИФЕРИЧЕСКИХ НЕРВОВ



В периферической нервной системе функционируют адренергические (медиатор — норадреналин), холинергические (медиатор — ацетилхолин), пуринергические (медиаторы — АТФ и аденозин), дофаминергические и серотонинергические синапсы. Наибольшее количество синаптотропных средств влияет на адренергические и холинергические синапсы.

Различают два типа центробежных (эфферентных) нервов:

1. Двигательные (соматические) нервы состоят из холинергических аксонов, следующих непрерывно от мотонейронов передних рогов спинного мозга (спинномозговые нервы) или ствола головного мозга (черепно-мозговые нервы) до скелетных мышц.

2. Вегетативные нервы иннервируютвнутренние органы, разделяются на симпатические и парасимпатические:

· симпатические нервы состоят из коротких преганглионарных и длинных постганглионарных волокон, образующих синаптический контакт в вегетативных ганглиях. Центры преганглионарных волокон находятся в боковых рогах грудного отдела спинного мозга (сегменты С8, Тh — L3). Ганглии образуют цепочку около позвоночника. Симпатические преганглионарные волокна — холинергические, постганглионарные волокна — адренергические;

· парасимпатические нервы состоят из длинных преганглионарных и коротких постганглионарных волокон. Ганглии локализованы около исполнительных органов или внутриорганно. Парасимпатические нервы находятся в составе черепно-мозговых нервов (глазодвигательный, лицевой, языкоглоточный, блуждающий) и спинномозговых тазовых нервов (центры в боковых рогах крестцового отдела спинного мозга). Парасимпатические преганглионарные и постганглионарные волокна — холинергические.

Эфферентные нервы мозгового слоя надпочечников не прерываются в вегетативных ганглиях и представляют собой преганглионарные холинергические волокна. Хромаффинную ткань надпочечников рассматривают как аналог симпатических ганглиев, у которых редуцировались аксоны, а медиатор стал гормоном (70 — 90 % составляет адреналин, 10 — 30% — норадреналин).

В каротидных клубочках ацетилхолин выделяется клетками клубочков, а холинорецепторы расположены на окончаниях афферентных нервов, идущих к дыхательному центру.

Таким образом, холинергические волокна — двигательные, симпатические преганглионарные, парасимпатические преганглионарные и постганглионарные, адренергические волокна — симпатические постганглионарные.

АДРЕНЕРГИЧЕСКИЕ СИНАПСЫ

Адренергические нейроны расположены в ЦНС (голубое пятно среднего мозга, мост, продолговатый мозг) и в симпатических ганглиях.

Периферические адренергические синапсы образованы варикозными утолщениями разветвлений постганглионарных симпатических волокон.

Медиатор адренергических синапсов — норадреналин. Его предшественник в биосинтезе дофамин выполняет медиаторную функцию в дофаминергических синапсах. Адреналин представляет собой гормон мозгового слоя надпочечников. Все три вещества относятся к группе катехоламинов, так как содержат гидроксилы в 3-м и 4-м положениях ароматического кольца.

Синаптические пузырьки в адренергических синапсах имеют под электронным микроскопом гранулярное строение, и поэтому получили название гранулы.

В гранулах норадреналин депонирован в связи с АТФ и белком хромогранином. В составе гранул обнаружены также ферменты и модулирующие нейропептиды (энкефалины, нейропептид Y).

Норадреналин синтезируется из аминокислоты тирозина. Превращение фенилаланина в тирозин является неспецифическим процессом и происходит в печени. Обе аминокислоты в большом количестве содержатся в твороге, сыре, шоколаде, бобовых.

Тирозин с помощью активного транспорта поступает в адренергические окончания. В их цитоплазме он включает второй гидроксил в 3-м положении ароматического кольца, превращаясь в диоксифенилаланин (ДОФА). Эту реакцию катализирует тирозингидроксилаза. Затем декарбоксилаза ароматических L-аминокислот декарбоксилирует ДОФА в дофамин, транспортируемый в гранулы. На последнем этапе дофамин приобретает третий гидроксил в β-положении боковой цепи при участии дофамин-β-гидроксилазы.

В мозговом слое надпочечников норадреналин подвергается метилированию в гормон адреналин под влиянием N-метилтрансферазы (донатор метальных групп — S-аденозилметионин). Образование адреналина стимулируют глюкокортикоиды, эстрогены и тироксин. Глюкокортикоиды, поступая в мозговой слой по воротной системе надпочечников, активируют тирозингидроксилазу, дофамин-β-гидроксилазу и N-метилтрансферазу. У некоторых видов акул корковый и мозговой слои надпочечников представляют собой изолированные железы, поэтому у них адреналин не синтезируется, а единственным гормоном хромаффинных клеток является норадреналин.

ТИРОЗИН  
Тирозингидроксилаза (тирозин-3-монооксигеназа). Кофактор — тетрагидроптерин
ДОФА  
Декарбоксилаза ароматических L-аминокислот. Кофактор — пиридоксальфосфат
ДОФАМИН  
Дофамин-β-гидроксилаза Кофактор — аскорбат
НОРАДРЕНАЛИН  
Фeнилэтaнoлaмин-N-мeтилтpaнcфepaзa. Кофактор — S-аденозилметионин
АДРЕНАЛИН  

После диссоциации комплексов норадреналин — адренорецептор медиатор инактивируется при участии ряда механизмов:

· нейрональный захват (захват-1) — активный транспорт вначале через пресинаптическую мембрану (сопряжен с выходом ионов натрия), а затем через мембрану гранул под влиянием АТФ-зависимой протонной транслоказы (при входе в гранулы одной молекулы норадреналина в цитоплазму выходят 2 протона);

· кстранейрональный захват (захват-2) нейроглией, фибробластами, миокардом, эндотелием и гладкими мышцами сосудов;

· инактивация ферментами.

80% норадреналина участвует в нейрональном захвате, по 10% подвергается экстранейрональному захвату и ферментативному расщеплению. Необходимость нейронального захвата диктуется дефицитом субстратов и большой потребностью в энергии для синтеза норадреналина из тирозина. Для сохранения адреналина основное значение имеет экстранейрональный захват.

Ферменты инактивации катехоламинов — моноаминоксидаза (МАО) и катехол-О-метилтрансфераза (КОМТ). МАО, локализованная на внешней мембране митохондрий и в гранулах, осуществляет окислительное дезаминирование катехоламинов с образованием биогенных альдегидов. Затем альдегиды окисляются НАД-зависимой альдегиддегидрогеназой в кислоты или восстанавливаются альдегидредуктазой в гликоли.

Цитоплазматический фермент КОМТ катализирует присоединение метальной группы к гидроксилу в 3-м положении ароматического кольца (только при наличии гидроксила в 4-м положении). Донатором метильных групп служит S-аденозилметионин. Метилированные продукты в 200 — 2000 раз (по разным тестам) менее активны, чем норадреналин и адреналин.

Адренорецепторы

В 1948 г. английский фармаколог Р. Алквист высказал гипотезу о двух типах адренорецепторов. a-Адренорецепторы вызывают сужение сосудов, наиболее чувствительны к адреналину, меньше реагируют на норадреналин и очень слабо воспринимают действие изадрина (изопропилнорадреналин). β-Адренорецепторы расширяют сосуды, обладают максимальной чувствительностью к изадрину, в 10 — 50 раз слабее возбуждаются адреналином и мало реагируют на норадреналин.

Адренорецепторы локализованы на постсинаптической, пресинаптической мембранах и в органах, не получающих адренергическую иннервацию. Постсинаптические адренорецепторы имеют индексы 1 или 2, пресинаптические и внесинаптические адренорецепторы обозначаются индексом 2. Внесинаптические адренорецепторы возбуждаются циркулирующими в крови норадреналином и адреналином.

Адренорецепторы ассоциированы с G-белками. Они связывают катехоламины с помощью кармана, состоящего из высококонсервативных остатков аминокислот, расположенных в середине и во внеклеточной трети гидрофобных трансмембранных спиралей. Аминогруппа катехоламинов устанавливает ионную связь с карбоксилом аспарагиновой кислоты в 3-м трансмембранном домене. Гидроксилы катехола образуют водородную связь с остатками серина в 5-м и 7-м доменах, что необходимо для активации адренорецепторов.

Сведения о механизмах функционирования, чувствительности к агонистам и антагонистам, физиологической роли адренорецепторов представлены в табл. 13 — 15.

Постсинаптические a1-адренорецепторы (А, В, D) регулируют активность мембранных фосфолипаз и проницаемость кальциевых каналов L-типа. В гладких мышцах ионы кальция активируют кальмодулинзависимую киназу легких цепей миозина, что необходимо для образования актомиозина и сокращения. Только в желудке и кишечнике a1-адренорецепторы, открывая кальцийзависимые калиевые каналы, вызывают гиперполяризацию сарколеммы и расслабление гладких мышц. Эффекты возбуждения a1-адренорецепторов следующие:

· сокращение радиальной мышцы радужки с расширением зрачков (мидриаз; греч. amydros — темный, неясный);

· сужение сосудов кожи, слизистых оболочек, органов пищеварения, почек и головного мозга;

· повышение АД;

· сокращение капсулы селезенки с выбросом депонированной крови;

· сокращение сфинктеров пищеварительного тракта и мочевого пузыря;

· уменьшение моторики и тонуса желудка и кишечника.

 

Таблица 13.Адренорецепторы и их эффекторные системы

Адренорецепторы G-белки Эффекторный механизм
a1 Gq Gq Gq, Gi/Gо Gq ↑ фосфолипазы С ↑ фосфолипазы D ↑ фосфолипазы А2 ↑ Са2+-каналов
a2 Gi Gi Gо Gi/Gо ↓ аденилатциклазы ↑ К+-каналов ↓Са2+-каналов (L. и N) ↑ фосфолипаз С и А2
β1 Gs ↑ аденилатциклазы ↑ Са2+-каналов (L)
β2 Gs ↑ аденилатциклазы

 

Таблица 14.Адренорецепторы

Рецептор Агонисты Антагонисты Локализация Функции
a1 А ≥ НА >> И Мезатон Празозин Гладкие мышцы сосудов, мочеполовой системы Сокращение
Гладкие мышцы пищеварительного тракта Расслабление
Сердце Повышение сократимости, аритмия
a2 А ≥ НА>> И Клофелин Йохимбин Нервные окончания Уменьшение выделения НА
β-Клетки островков поджелудочной железы Уменьшение секреции инсулина
Тромбоциты Агрегация
Гладкие мышцы сосудов Сокращение
β1 И > А = НА Атенолол Метопролол Сердце Тахикардия, повышение проводимости и сократимости
Юкстагломерулярный аппарат почек Секреция ренина
Жировая ткань Липолиз
β 2 И > А >> НА Сальбутамол Бутоксамин Нервные окончания Повышение выделения НА
Гладкие мышцы Расслабление
Скелетные мышцы Гликогенолиз, вход К+
Печень Гликогенолиз, гликонеогенез

Примечание. А — адреналин, НА — норадреналин, И — изадрин.

 

Таблица 15.Влияние вегетативной нервной системы на функции эффекторных органов

Эффекторный орган   Адренергическое влияние Холинергическое влияние (М-холинорецепторы1)
Тип рецептора изменение функций2 изменение функций2
ГЛАЗ
Радиальная мышца радужки a1 Расширение зрачков (мидриаз) ++
Круговая мышца радужки Сужение зрачков (миоз) +++
Цилиарная мышца β2 Расслабление для ясного видения вдали + Сокращение для ясного видения вблизи +++
СЛЕЗНЫЕ ЖЕЛЕЗЫ a Повышение секреторной функции + Повышение секреторной функции +++
СЕРДЦЕ3
Синусный узел β1,2 Тахикардия ++ Брадикардия +++ Вагусная остановка сердца
Предсердия β1,2 Повышение сократимости и скорости проведения потенциала действия ++ Уменьшение сократимости, укорочение потенциала действия ++
Атриовентрикулярный узел β1,2 Повышение автоматизма и проводимости ++ Уменьшение проводимости, атриовентрикулярная блокада +++
Система Гиса-Пуркинье β1,2 Повышение автоматизма и проводимости ++ Действие слабое
Желудочки β1,2 Повышение сократимости, скорости проведения потенциала действия и автоматизма +++ Незначительное уменьшение сократимости
АРТЕРИОЛЫ 4
Коронарные a1,2, β2 Сужение + Расширение ++ Сужение
Кожи и слизистых оболочек a1,2 Сужение +++
Скелетных мышц β2 Расширение +++ Расширение +
Мозговые a1 Слабое сужение
Легочные a1 β2 Сужение + Расширение +
Органов брюшной полости a1 Сужение +++
Почек a1 Сужение +++
ВЕНЫ a1,2 β2 Сужение ++ Расширение ++
ЛЕГКИЕ
Гладкие мышцы трахеи и бронхов β2 Расслабление + Сокращение ++
Бронхиальные железы β2 Уменьшение секреторной функции + Повышение секреторной функции +++
СЛЮННЫЕ ЖЕЛЕЗЫ a1 β Секреция К+ и воды + Секреция амилазы + Секреция К+ и воды +++
ЖЕЛУДОК
Перистальтика и тонус a1,2, β2 Уменьшение + Повышение +++
Сфинктеры a1 Сокращение + Расслабление +
Секреция желудочного сока   Уменьшение Повышение +++
КИШЕЧНИК
Перистальтика и тонус a1,2, β1,2 Уменьшение + Повышение +++
Сфинктеры a1 Сокращение + Расслабление +
Секреция кишечного сока a2 Уменьшение + Повышение ++
ПЕЧЕНЬ β2 Гликогенолиз, гликонеогенез
ЖЕЛЧНЫЙ ПУЗЫРЬ И ЖЕЛЧНЫЕ ПРОТОКИ β2 Расслабление + Сокращение +
ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА
Ацинусы a Уменьшение секреторной функции + Повышение секреторной функции +++
β-Клетки островков a 2 Уменьшение секреции инсулина ++ —  
β2 Повышение секреции инсулина +
ПОЧКИ
Секреция ренина a1, β1 Повышение ++
МОЧЕВОЙ ПУЗЫРЬ
Мышца дна β2 Расслабление + Сокращение +++
Треугольник и сфинктер a1 Сокращение ++ Расслабление ++
МОЧЕТОЧНИК
Перистальтика и тонус a1 Повышение Повышение (?)
МАТКА a1β2 Беременная: сокращение (а1), или расслабление (б2) Небеременная: расслабление (б2) Сокращение ++
МУЖСКИЕ ПОЛОВЫЕ ОРГАНЫ a1 Эякуляция ++ Эрекция +++
КАПСУЛА СЕЛЕЗЕНКИ a1 Сокращение +++
КОЖА
Пиломоторы a1 Сокращение +++
Потовые железы Повышение секреторной функции
СКЕЛЕТНЫЕ МЫШЦЫ β2 Повышение сократимости, гликогенолиз, вход К+
ЖИРОВАЯ ТКАНЬ β1 Липолиз +++

Примечание. 1 — в гладких мышцах и железах находятся различные типы М-холинорецепторов (преобладают М3), в сердце локализованы М2-холинорецепторы; 2 — степень изменения функций от 1+ до 3+; 3 — в сердце преобладают β1-адренорецепторы; 4 — указаны преобладающие типы адренорецепторов, в артериолах органов брюшной полости и почек находятся сосудорасширяющие рецепторы дофамина.

a2-Адренорецепторы (А, В, С) снижают активность аденилатциклазы.

Постсинаптические a2-адренорецепторы суживают сосуды кожи и слизистых оболочек, тормозят моторику желудка и кишечника, уменьшают секрецию кишечного сока.

Пресинаптические a2-адренорецепторы по принципу отрицательной обратной связи снижают выделение норадреналина из адренергических окончаний при избытке медиатора в синаптической щели (увеличивают калиевую проводимость мембран, блокируют кальциевые каналы L- и N-типов).

Внесинаптические a2-адренорецепторы вызывают спазм сосудов, подавляют секрецию инсулина и повышают агрегацию тромбоцитов.

β-Адренорецепторы, активируя аденилатциклазу, повышают синтез цАМФ.

Для постсинаптических β1-адренорецепторовхарактерны следующие эффекты:

· возбуждение сердца — тахикардия, ускорение проведения потенциала действия по проводящей системе, усиление сокращений миокарда, рост потребности в кислороде (β1-адренорецепторы повышают фосфорилирование кальциевых каналов и белка фосфоламбана, прямо открывают кальциевые каналы в миокарде, что сопровождается увеличенным входом ионов кальция и мобилизацией их из саркоплаз-матического ретикулума);

· ослабление моторики кишечника;

· секреция ренина;

· цАМФ-зависимый липолиз в жировых депо.

Постсинаптические и внесинаптическиеβ2-адренорецепторы расслабляютгладкие мышцы и вызывают гипергликемию. В гладких мышцах цАМФ-зависимая протеинкиназа фосфорилирует киназу легких цепей миозина, что уменьшает чувствительность этого фермента к активирующему действию ионов кальция. Кроме того, β2 адренорецепторы блокируют кальциевые каналы гладких мышц в результате модификации цитоскелета; регулируют экспрессию генов с задержкой апоптоза. Типичные эффекты β2-адренорецепторов следующие:

· расширение сосудов сердца, легких и скелетных мышц;

· снижение АД;

· расширение бронхов и уменьшение секреторной функции бронхиальных желез;

· торможение моторики желудка и кишечника;

· расслабление желчного пузыря, мочевого пузыря, беременной и небеременной матки;

· усиление цАМФ-зависимых гликогенолиза и гликонеогенеза в печени, гликогенолиза в скелетных мышцах;

· повышение секреции инсулина.

 

Таблица 16.Классификация лекарственных средств, влияющих на адренергические синапсы (указаны основные препараты)

Адреномиметики
Адреномиметики прямого действия a, β-адреномиметики адреналин
a-адреномиметики норадреналин, мезатон
β-адреномиметики добутамин, изадрин, орципреналин
β2-адреномиметики сальбутамол, фенотерол
Адреномиметики непрямого действия   эфедрин
Адреноблокаторы
Блокаторы адренорецепторов a, β -адрено6локаторы карведилол, проксодолол
a -адреноблокаторы дигидроэрготоксин, дигидроэрготамин, ницерголин, тропафен, фентоламин
a1-адреноблокаторы празозин, доксазозин
β-адреноблокаторы анаприлин, надолол, окспренолол, пиндолол
β1-адреноблокаторы атенолол, метопролол, небиволол
Симпатолитики   октадин, резерпин

 

Пресинаптические β2-адренорецепторы осуществляют положительную обратную связь, стимулируя выделение норадреналина при его дефиците в синаптической щели.

Адренорецепторы имеют сходную последовательность аминокислот (у a1- и a2-адренорецепторов идентичны 30 % аминокислот, у β1и β2-адренорецепторов — 60 %).

В сосудах и внутренних органах расположены a- и β-адренорецепторы различных типов, например, в сосудах легких обнаружено 30% β1-адренорецепторов и 70% β2-адренорецепторов.


Лекция 10

АДРЕНОМИМЕТИКИ

 

Фармакологическое действие адреномиметиков во многом аналогично эффектам раздражения постганглионарных волокон симпатических нервов. Некоторые адреномиметики оказывают влияние на ЦНС.

В 1895 г. Г. Оливер и Э. Шефер открыли способность экстракта надпочечников повышать АД. В 1899 г. был выделен гормон мозгового слоя надпочечников — адреналин (эпинефрин). В 1910г. Генри Дейл установил связь химической структуры с фармакологическим действием в ряду адреномиметиков.

Адреномиметики прямого действия являются агонистами a- и β-адренорецепторов. Адреномиметики непрямого действия возбуждают адренорецепторы опосредованно — освобождают норадреналин из пресинаптических окончаний, тормозят нейрональный захват норадреналина, ингибируют МАО.

Адреномиметики являются производными фенилалкиламина или имидазола.



Просмотров 2906

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!