![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Распределение Максвелла-Больцмана
В 1866 г. Больцман (1844-1906 г.) вывел более общее распределение, включающее распределение Максвелла, которое называется распределением Максвелла-Больцмана
где Распределение (33) можно записать в виде распределения по полной энергии Е частиц f(E)=Aexp(-E/kT), (34) где E=Wк+Wп - полная энергия частицы. Среднее число столкновений и средняя длина свободного пробега молекул Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторое расстояние l, которое называется длиной свободного пробега молекул. Эти расстояния могут быть самыми разными. Поэтому в кинетической теории вводится понятие средней длины свободного пробега молекул <l>. При вычислении <l> необходимо принять определенную модель газа. Будем считать, что молекулы представляют собой шарики некоторого диаметра d порядка 10-10 м, зависящего от природы газа. Двигаясь со средней скоростью <v>, молекула столкнется только с теми молекулами, центры которых находятся в цилиндре радиуса d. Среднее число столкновений <z>, которое испытает молекула с другими неподвижными молекулами за время Dt, будет равно числу молекул внутри цилиндра, диаметр которого 2d и длина <v>Dt, т.е. <z>=pd2<v>Dt×n, где n - концентрация молекул. Расчеты показывают, что при учете движения других молекул <z>= Тогда средняя длина свободного пробега молекул <l>=<v>Dt/<z>=1/( т.е. обратно пропорциональна концентрации молекул (или давлению P т. к., Р=nkT). Можно показать, что при нормальных условиях < l > ≈ 10-7 м и число столкновений за 1 секунду < z> /Dt≈1010 c-1. Лекция 3. Явления переноса До сих пор мы рассматривали исключительно равновесные системы, характеризующиеся при постоянных внешних условиях неизменностью параметров (Р, V, T, ) во времени и отсутствием в системе потоков вещества, энергии, импульса. Однако, беспорядочность теплового движения молекул газа, непрерывные столкновения между ними приводят к постоянному перемешиванию частиц и изменению их скоростей и энергий. Если в газе существует пространственная неоднородность плотности, температуры, скорости упорядоченного перемещения отдельных слоев, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки вещества, энергии, импульса упорядоченного движения молекул. Эти потоки, характерные для неравновесных состояний газа, являются физической основой особых процессов, объединенных общим названием ”явления переноса ”. К этим явлениям относятся диффузия, теплопроводность и внутреннее трение. Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса Диффузия
Это перенос массы из мест с большей плотностью r к местам с меньшей плотностью. Фик (1855 г) установил, что перенесенная масса dm через расположенную перпендикулярно направлению переноса вещества площадку dS^за время dt dm= - D(dr/dx) dS^dt,(1) где dr/dx характеризует скорость изменения плотности rна единицу длиныx, D – коэффициент диффузии. Можно показать, что для газов Знак минус в (1) указывает, что перенос массы при диффузии происходит в направлении убывании плотности, т. е. вдоль оси ох, если r2>r1 (dr/dx<0).
Теплопроводность Это перенос теплоты (внутренней энергии) от более нагретых мест к менее нагретым. Фурье (1822 г.) установил, что количество теплоты dQ= -c(dT/dx) dS^dt, (3) где
где сV - удельная теплоемкость при постоянном объеме газа. Знак минус в (3) указывает, что при теплопроводности перенос внутренней энергии происходит в направлении убывания температуры, т. е. вдоль оси ОХ, если
![]() |