Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Распределение Максвелла-Больцмана



В 1866 г. Больцман (1844-1906 г.) вывел более общее распределение, включающее распределение Максвелла, которое называется распределением Максвелла-Больцмана

(33)

где - импульс частицы, в частности молекулы газа, - радиус-вектор, характеризующий положение частицы, p2/2m0=Wк – кинетическая энергия частицы, - потенциальная энергия частицы.

Распределение (33) можно записать в виде распределения по полной энергии Е частиц

f(E)=Aexp(-E/kT), (34)

где E=Wк+Wп - полная энергия частицы.

Среднее число столкновений и средняя длина свободного пробега молекул

Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом.

Между двумя последовательными столкновениями молекулы проходят некоторое расстояние l, которое называется длиной свободного пробега молекул.

Эти расстояния могут быть самыми разными. Поэтому в кинетической теории вводится понятие средней длины свободного пробега молекул <l>.

При вычислении <l> необходимо принять определенную модель газа. Будем считать, что молекулы представляют собой шарики некоторого диаметра d порядка 10-10 м, зависящего от природы газа.

Двигаясь со средней скоростью <v>, молекула столкнется только с теми молекулами, центры которых находятся в цилиндре радиуса d.

Среднее число столкновений <z>, которое испытает молекула с другими неподвижными молекулами за время Dt, будет равно числу молекул внутри цилиндра, диаметр которого 2d и длина <v>Dt, т.е. <z>=pd2<v>Dt×n, где n - концентрация молекул.

Расчеты показывают, что при учете движения других молекул

<z>= pd2 <v>Dt×n. (36)

Тогда средняя длина свободного пробега молекул

<l>=<v>Dt/<z>=1/( pd2n), (37)

т.е. обратно пропорциональна концентрации молекул (или давлению P т. к., Р=nkT). Можно показать, что при нормальных условиях < l > ≈ 10-7 м и число столкновений за 1 секунду < z> /Dt≈1010 c-1.

Лекция 3. Явления переноса

До сих пор мы рассматривали исключительно равновесные системы, характеризующиеся при постоянных внешних условиях неизменностью параметров (Р, V, T, ) во времени и отсутствием в системе потоков вещества, энергии, импульса.

Однако, беспорядочность теплового движения молекул газа, непрерывные столкновения между ними приводят к постоянному перемешиванию частиц и изменению их скоростей и энергий. Если в газе существует пространственная неоднородность плотности, температуры, скорости упорядоченного перемещения отдельных слоев, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки вещества, энергии, импульса упорядоченного движения молекул.

Эти потоки, характерные для неравновесных состояний газа, являются физической основой особых процессов, объединенных общим названием ”явления переноса ”. К этим явлениям относятся диффузия, теплопроводность и внутреннее трение. Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса

Диффузия

Это перенос массы из мест с большей плотностью r к местам с меньшей плотностью.

Фик (1855 г) установил, что перенесенная масса dm через расположенную перпендикулярно направлению переноса вещества площадку dS^за время dt

dm= - D(dr/dx) dS^dt,(1)

где dr/dx характеризует скорость изменения плотности rна единицу длиныx,

D – коэффициент диффузии.

Можно показать, что для газов . (2)

Знак минус в (1) указывает, что перенос массы при диффузии происходит в направлении убывании плотности, т. е. вдоль оси ох, если r2>r1 (dr/dx<0).

Теплопроводность

Это перенос теплоты (внутренней энергии) от более нагретых мест к менее нагретым. Фурье (1822 г.) установил, что количество теплоты , которое переносится вследствие теплопроводности через площадку dS^за время

dQ= -c(dT/dx) dS^dt, (3)

где характеризует скорость изменения температуры Т на единицу длинны х, (греч. хи) – коэффициент теплопроводности. Можно показать, что для газов

(4)

где сV - удельная теплоемкость при постоянном объеме газа.

Знак минус в (3) указывает, что при теплопроводности перенос внутренней энергии происходит в направлении убывания температуры, т. е. вдоль оси ОХ, если .



Просмотров 962

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!