![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Собственная проводимость полупроводников
Т.к. средние числа заполнения электронами уровней зоны проводимости малы, то можно пренебречь единицей в (7.1). Учитывая все это, получаем <ni>»exp[-DE/(2kT)]. Поскольку проводимость пропорциональна числу носителей тока, то удельная электропроводность g=g0 exp[-DE/(2kT)], (5) где g0 - можно считать постоянной. Увеличение проводимости полупроводника с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается). Логарифмируя (5), находим, что lng=lng0-DE/(2kT). На рис. 4 приведена зависимость lng от 1/T. По углу наклона a этой прямой можно определить ширину запрещенной зоны Примесные полупроводники 9.6.1. Донорная примесь, полупроводники n-типа Введение в полупроводник примесей сильно влияет на его электрические свойства. Рассмотрим, например, что произойдет, если в решетке германия (Ge - четырехвалентен) один его атом замещен атомом примеси, обладающей пятью валентными электронами (фосфор, мышьяк, сурьма). Четыре электрона примесного атома будут находиться в химической связи с соседними атомами германия, а пятый, “лишний” электрон оказывается слабо связан с ядром атома, и его сравнительно легко перевести в зону проводимости. Энергия “лишних” примесных электронов несколько меньше минимальной энергии зоны проводимости (см. рис. 5а). Эти уровни заполнены некоторым числом электронов и называются донорными, а примесь (соответственно) называется донорной. Она создает в полупроводнике электронную проводимость или проводимость n-типа (от слова negative - отрицательный). Такой полупроводник - полупроводник n-типа.
9.6.2 Акцепторная примесь, полупроводники р-типа Предположим что в решетку германия введен примесный атом с тремя валентными электронами, например бор или индий. Трех валентных электронов атома примеси недостаточно для образования связи с четырьмя соседними атомами Ge, поэтому заимствуется один электрон у ближайшего атома Ge. Тогда на месте электрона, ушедшего из атома германия, образуется “положительная дырка”. Атомы примеси, вызывающие возникновение дырок, называются акцепторными, а сама примесь - акцепторной. Акцепторные уровни находятся вблизи максимальной энергии валентной зоны (см. рис. 5б). Акцепторная примесь создаст в полупроводнике дырочную проводимость или проводимость р-типа (от слова positive - положительный). Полупроводник с такой проводимостью называется полупроводником р-типа. Для примесных полупроводников ширина запрещённой зоны DЕпр в десятки раз меньше ширины запрещённой зоны собственных (т. е. беспримесных, химически чистых) полупроводников, т.е. DЕпр<<DЕ. P-n-переход
(+ -) результирующая напряженность 9.8. Понятие о сверхпроводимостиЯвление сверхпроводимости заключается в скачкообразном исчезновении сопротивления при очень низких температурах (см. рис. 7, где представлена зависимость удельного сопротивления r от Т для талия, ртути и свинца). Температура, при которой происходит этот процесс, называется критической температурой Тк. В этом случае слабое магнитное поле не проникает в сверхпроводник, т. е. для него m = 0 . Сильное магнитное поле разрушает сверхпроводящее состояние. Теорию сверхпроводимости создали Бардин, Купер и
называются куперовскими парами. Эта пара движется в поле как единая частица - бозон. В настоящее время реализована сверхпроводимость при относительно высоких температурах.
![]() |