Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Линейное пространство. Базис. Координаты вектора, их единственность в заданном пространстве



Свойства определителей второго и третьего порядков.

Вычисление определителей второго и третьего порядков.

Умножение матриц, его свойства. Миноры. Алгебраическое дополнение.

Свойства определителя.

Решение СЛАУ методом Гаусса.

Детерминант (определитель) произведения матриц. Оценка ранга произведения матриц.

Общее решение системы линейных уравнений. Фундаментальная система решений.

Всякая максимально линейно независимая система решений однородной системы уравнений называется ее фундаментальной системой решения.

Элементарные преобразования матрицы.

Условие совместимости системы линейных уравнений. Теорема Кронекера-Капелли.

Обратная матрица

Решение СЛАУ методом Крамера.

Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод.

Для системы линейных уравнений с неизвестными (над произвольным полем)

с определителем матрицы системы , отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы и , либо набор состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

 

Линейное пространство. Базис. Координаты вектора, их единственность в заданном пространстве.

Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества — базисных векторов. Любой декартовой системе координат на плоскости или в трехмерном пространстве (также и в пространстве другой размерности) может быть сопоставлен базис, состоящий из векторов, каждый из которых направлен вдоль своей координатной оси. Это относится и к прямоугольным декартовым координатам (тогда соответствующий базис называется ортогональным), так и к косоугольным декартовым координатам (которым будет соответствовать неортогональный базис).

Часто удобно выбрать длину (норму) каждого из базисных векторов единичной, такой базис называется нормированным.

Наиболее часто базис выбирают ортогональным и нормированным одновременно, тогда он называется ортонормированным.

В любом векторном пространстве базис можно выбрать различным образом (поменяв направления его векторов или их длины, например). Для трехмерного пространства часто по традиции используется и обозначение

Представление какого-то конкретного (любого) вектора пространства в виде линейной комбинации векторов базиса (суммы базисных векторов числовыми коэффициентами), например

или

или, употребляя знак суммы : называется разложением этого вектора по этому базису.

Числовые коэффициенты называются коэффициентами разложения, а их набор в целом — представлением (или представителем) вектора в базисе (Разложение вектора по конкретному базису единственно; разложение одного и того же вектора по разным базисам — разное, то есть получается разный набор конкретных чисел, однако в результате при суммировании — как показано выше — дают один и тот же вектор).

Декартовы координаты в трехмерном пространстве (левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Принято по умолчанию использовать правые базисы (это общепринятое соглашение, если только какие-то особые причины не заставляют от него отойти — и тогда это оговаривается явно). Базисом, соответствующим такой системе координат, является тройка векторов, каждый из которых направлен вдоль какой-то из осей (три базисных вектора изображаются, как правило, исходящими из общего начала).

 



Просмотров 1431

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!