Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Типы катаболизма и организмов-разрушителей



Катаболизм (разложение) органических остатков - длительный и сложный процесс, контролирующий несколько важных функций экосистемы. В результате этого процесса:

1) возвращаются в круговорот элементы питания, находящиеся в мертвом органическом веществе;

2) производится пища для последовательного ряда организмов в детритной пищевой цепи;

3) производятся вторичные метаболиты ингибирующего, стимулирующего и часто регулирующего действия;

4) образуются хелатные комплексы с элементами питания;

5) преобразуются инертные вещества земной поверхности, что приводит к образованию такого уникального природного тела, каким является почва;

6) поддерживается состав атмосферы, способствующий жизни крупных аэробов, таких, как человек.

Если рассматривать разложение в широком смысле слова, как "любое биологическое окисление, дающее энергию", то с учетом потребности в кислороде можно выделить несколько типов этого процесса, приблизительно аналогичных типам фотосинтеза:

1. Аэробное дыхание - окислителем (акцептором электронов) служит газообразный молекулярный кислород (тип 1 );

2. Анаэробное дыхание протекает без участия газообразного кислорода. Акцептором электронов служит не кислород, а какое-либо другое неорганическое (тип 2) или органическое (тип 3) соединение;

3. Брожение тоже анаэробный процесс, но окисляемое органичес­кое соединение само служит акцептором электронов (тип 4).

Аэробное дыхание (тип 1) - процесс обратный "нормальному фотосинтезу"; в этом процессе синтезированное органическое вещество {СН2O} вновь разлагается с образованием СО2 и H2О и с высвобождением энергии. Все высшие растения и животные и большинство микроорганизмов получают энергию для поддержания жизнедеятельности и построения клеток именно с помощью этого процесса. В итоге завершенного дыхания образуются СО2, вода и вещества клетки; однако процесс может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, еще содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами (процессы 2 и 3).

Бескислородное дыхание служит основой жизнедеятельности главным образом у сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие), хотя, как звено метаболизма, оно может встречаться и в некоторых тканях высших животных. Хороший пример облигатных анаэробов - метановые бактерии, которые разлагают органические соединения, образуя метан путем восстановления, либо органического углерода, либо углерода карбонатов. Таким образом, дыхание у них может происходить по типам 2 и 3.

К общеизвестным организмам, использующим брожение (тип 4), относятся дрожжи; они имеют большую практическую ценность для человека, но, кроме того, в изобилии встречаются в почве, где играют ключевую роль в разложении растительных остатков.

Многие группы бактерий (например факультативные анаэробы) способны и к аэробному и к анаэробному дыханию. Однако конечные продукты этих двух процессов различны, и количество высвобождающейся энергии при анаэробном дыхании значительно меньше.

Общий баланс процессов продукции и разложения

Каждый год фотосинтезирующими организмами на Земле создается около 100 млрд. т. органического вещества. За этот промежуток времени приблизительно такое же количество живого вещества окисляется, превращаясь в СО2 и воду в результате дыхания организмов. Однако этот баланс неточен. Для биосферы в целом важнейшее значение имеет отставание процесса полной гетеротрофной утилизации и разложения продуктов автотрофного метаболизма от процесса их создания, поскольку именно отставание обусловило накопление в недрах горючих ископаемых, а в атмосфере - кислорода. В этой связи крайнюю озабоченность вызывает деятельность человека, который хотя и ненамеренно, но очень значительно ускоряет процессы разложения.

Лекция 11.

Круговороты азота и серы.

1. Круговорот азота.

2. Круговорот серы.

 

Круговорот азота.

Круговорот азота - пример очень сложного и хорошо забуференного круговорота газообразных веществ. Воздух, на 78% состоящий из азота, представляет собой крупнейший "резервуар" и одновременно "предохранительный клапан" системы. Азот постоянно поступает в атмосферу благодаря деятельности денитрифицирующих бактерий и постоянно возвращается в круговорот в результате деятельности азотфиксирующих бактерий или водорослей (биологическая фиксация азота), а также действию физических процессов (например молний), в которых происходит фиксация азота.

Путь прохождения азота через экосистему отличается от пути углерода и кислорода в нескольких важных аспектах. Во-первых, большинство организмов не могут ассимилировать азот из огромного его фонда (3,85·1021 г N2), имеющегося в атмосфере. Во-вторых, азот не принимает непосредственного участия в высвобождении химической энергии при дыхании: главная его роль сводится к тому, что он входит в состав белков и нуклеиновых кислот, которые создают структуру биологических систем и регулируют их функционирование. В-третьих, биологическое разложение азотсодержащих органических соединений до неорганических форм слагается из нескольких стадий, и некоторые из этих стадий могут осуществляться только специализированными бактериями. В-четвертых, большая часть биохимических превращений, участвующих в разложении азотсодержащих соединений, происходит в почве, где доступность азота растениям облегчается растворимостью его неорганических соединений.

Содержание азота в живых тканях составляет чуть больше 3 % содержания его в активных фондах экосистемы; остальной азот распределен между детритом и нитратами, содержащимися в почве и океане. Кроме того, относительно небольшие количества азота находятся на промежуточных стадиях разложения белка - в виде аммиака и нитритов (табл. 3). Растения ежегодно ассимилируют 86·1014 г азота - менее 1 % активного фонда, поэтому общее время круговорота азота превышает 100 лет.

При круговороте азота происходит поэтапный распад органических соединений, в котором участвует много разных организмов и в результате которого азот в конечном счете переходит в нитратную форму.

Из всех доступных растениям форм, в каких азот содержится в почве, наиболее желательной является аммиак (NН3) или ион аммония (NН4+), потому что их превращение в органические соединения требует минимальных химических перестроек. Аммиак, однако, не может служить источником азота в почве потому, что в высоких концентрациях он токсичен для растительных тканей, и также потому, что он не удерживается в почве. Аммиак легко растворяется в воде и быстро вымывается из почвы. В кислых почвах аммиак превращается в ион аммония. Этот положительно заряженный ион в результате электростатического взаимодействия может присоединяться к поверхности глинисто-гумусовой мицеллы, однако он легко вытесняется в кислых почвах ионами водорода и тем самым тоже довольно легко вымывается водой. Некоторые глинистые минералы просто адсорбируют ионы аммония, включая их в свою кристаллическую решетку, и притом так прочно, что эти ионы не поддаются вымыванию и тем самым становятся недоступными для растений. Тот аммиак, который избежал вымывания из почвы, подвергается действию специализированных бактерий, извлекающих энергию путем окисления азота аммиака до нитритов (NО2-) и нитратов (NO3-). Отрицательно заряженные нитрит- и нитрат-ионы совершенно не связываются с частицами глины, а поэтому легко вымываются. Образовавшиеся в почве нитраты быстро ассимилируются корнями растений. В наземных экосистемах главные запасы азота представляет азот, входящий в состав органического детрита. В водных экосистемах азот содержится главным образом в виде растворенных нитратов.

Таблица 3.



Просмотров 1004

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!