Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Изменения газового состава и рН крови при гемической гипоксии



Изменения газового состава и рН крови при гемической гипоксии представлены на рис. 16–4. Они включют:

Снижение объёмного содержания кислорода в артериальной крови (VaO2 в норме равно 19,5–21 объёмных %).

• Снижение рvO2 (венозная гипоксемия).

• Уменьшение VvO2.

• Негазовый ацидоз.

• Снижение артерио‑венозной разницы по кислороду.

Важно заметить, что при гемической гипоксии сохраняется нормальное (!) парциальное напряжение кислорода в артериальной крови.

Ы ВЁРСТКА Вставить файл «ПФ Рис 16 04Типичные изменения газового состава при гипоксии гемического типа»

Рис.16–4.Типичные изменения газового состава и рН крови при гипоксии гемического типа. АВР — артерио‑венозная разница по кислороду.

Тканевая гипоксия

Причины тканевой гипоксии: факторы, снижающие эффективность утилизации кислорода клетками тканей и/или сопряжения окисления и фосфорилирования.

Патогенез тканевой гипоксии включает несколько ключевых звеньев. К их числу относят:

Снижение эффективности усвоения кислорода клетками.Наиболее часто это результат: подавления активности ферментов биологического окисления; значительного изменения физико‑химических параметров в тканях; торможения синтеза ферментов биологического окисления и повреждения мембран клеток.

– Подавление активности ферментов биологического окисления наблюдается при:

·специфическом ингибировании ферментов биологического окисления. Примером могут служить ионы циана (CN), препятствующие окислению цитохрома. В результате блокируется восстановление железа дыхательного фермента и транспорта кислорода к цитохрому. При этом реакции тканевого дыхания, активируемые другими агентами (не содержащими железо), не ингибируются. Однако, эффективность этих реакций весьма мала и не предотвращает развития гипоксии и нарушений жизнедеятельности. Аналогичные последствия вызывает блокада активных центров ферментов тканевого дыхания антимицином А, соединениями, содержащими сульфид‑ион S2– и некоторыми другими веществами.

·неспецифическом подавлении активности ферментов ионами металлов(Ag2+, Hg2+, Cu2+). При этом указанные металлы обратимо взаимодействуют с SH–группами фермента с образованием его неактивной меркаптоидной формы.

·конкурентном ингибировании ферментов биологического окисления.Оно заключается в блокировании активного центра фермента веществом, имеющим структурную аналогию с естественным субстратом реакции. Эффект конкурентного ингибирования фермента может быть устранён или снижен при возрастании содержания в клетке истинного субстрата. В роли конкурентных ингибиторов могут выступать оксалат и малонат, блокирующие взаимодействие сукцината с сукцинатдегидрогеназой в цикле трикарбоновых кислот; фторлимонная кислота, конкурирующая за активный центр аконитазы с цитратом.

– Изменения физико‑химических параметров в тканях(температуры, электролитного состава, рН, фазового состояния мембранных компонентов) в более или менее выраженной мере снижают эффективность биологического окисления. Отклонение от нормы указанных и других параметров наблюдается при многих болезнях и патологических состояниях: гипертермиях и гипотермиях, недостаточности различных органов (сердца, почек, печени), анемиях и ряде других).

– Торможение синтеза ферментов биологического окисленияможет наблюдаться при общем или частичном (особенно белковом) голодании; при большинстве гипо‑ и дисвитаминозов; нарушении обмена минеральных веществ, необходимых для синтеза ферментов.

– Повреждение мембран. В наибольшей мере это относится к мембранам митохондрий. Важно, что выраженная гипоксия любого типа сама по себе активирует многие механизмы, приводящие к повреждению мембран и ферментов клеток с развитием тканевой гипоксии.

Снижение степени сопряжения окисления и фосфорилирования макроэргических соединений в дыхательной цепи. В этих условиях увеличиваются расход кислорода тканями и интенсивность функционирования компонентов дыхательной цепи. Однако, большая часть энергии транспорта электронов трансформируется в тепло и не используется для ресинтеза макроэргов. Эффективность биологического окисления снижается. Клетки не получают энергетического обеспечения. В связи с этим нарушаются их функции и нарушается жизнедеятельность организма в целом.

Выраженной способностью разобщать процессы окисления и фосфорилирования обладают многие эндогенные агенты (например, избыток Ca2+, H+, ВЖК, йодсодержащие гормоны щитовидной железы), а также экзогенные вещества (2,4‑динитрофенол, дикумарин, пентахлорфенол, грамицидин и другие).

Изменения газового состава и рН крови при тканевой гипоксии представлены на рис. 16–5. Они характеризуются:

•Увеличением парциального напряжения кислорода в венозной крови.

• Повышением сатурации Hb кислородом в венозной крови.

• Увеличением объёмного содержания кислорода в венозной крови.

• Нормальным диапазон рО2, SO2 и VO2 в артериальной крови (в типичных случаях).

Уменьшением артерио‑венозной разницы по кислороду (исключением является тканевая гипоксия, развившаяся при действии разобщителей окисления и фосфорилирования).

• Негазовым ацидозом.

Ы ВЁРСТКА Вставить файл «ПФ Рис 16 05Типичные изменения газового состава при гипоксии тканевого типа»

Рис.16–5.Типичные изменения газового состава и рН крови при гипоксии тканевого типа. *При действии разобщающих агентов может меняться незначительно.

Субстратный тип гипоксии

Причины: дефицит в клетках субстратов биологического окисления. В клинической практике речь чаще всего идёт об глюкозе. При этом доставка к клеткам кислорода существенно не нарушена.

Патогенез субстратной гипоксии заключается в прогрессирующем торможении биологического окисления. В связи с этим в клетках быстро снижается уровень АТФ и креатинфосфата, величина мембранного потенциала. Изменяются и другие электрофизиологические показатели, нарушаются различные пути метаболизма и пластические процессы.

Изменения газового состава и рН крови при субстратной гипоксии представлены на рис. 16–6. Они заключаются в:

•Увеличении парциального напряжения кислорода в венозной крови.

Повышении сатурации кислородом Hb эритроцитов в венозной крови.

• Возрастании объёмного содержания кислорода в венозной крови.

• Уменьшении артерио‑венозной разницы по кислороду.

• Сохранении нормальных значений paO2, SaO2, VaO2.

• Развитии ацидоза в результате нарушений обмена веществ, гемодинамики, внешнего дыхания и других изменений, обусловленных болезнью или патологическим процессом, вызвавшим гипоксию субстратного типа. Например, при СД — дефицит глюкозы в клетках, в организме накапливаются КТ, лактат, пируват (в связи с нарушением липидного и углеводного обмена), что приводит к метаболическому ацидозу.

Ы ВЁРСТКА Вставить файл «ПФ Рис 16 06Типичные изменения газового состава при гипоксии субстратного типа»

Рис.16–6.Типичные изменения газового состава и рН крови при гипоксии субстратного типа *АВР — артерио‑венозная разница по кислороду.

Перегрузочный тип гипоксии

Причины перегрузочной гипоксии заключаются в значительном и/или длительном увеличении функций тканей, органов или их систем. При этом интенсификация доставки к ним кислорода и субстратов метаболизма, обмена веществ, реакций сопряжения окисления и фосфорилирования не способны устранить дефицита макроэргических соединений, развившегося в результате гиперфункции клетки. Наиболее часто это наблюдается в ситуациях, вызывающих повышенное и/или продолжительное функционирование скелетных мышц и/или миокарда.

Патогенез перегрузочной гипоксии.

Чрезмерная по уровню и/или длительности нагрузка на мышцу (скелетную или сердца) обусловливает:

•Относительную (по сравнению с требуемым при данном уровне функции) недостаточность кровоснабжения мышцы.

•Дефицит кислорода в миоцитах. Последнее вызывает недостаточность процессов биологического окисления в них.

Изменения газового состава и рН крови при перегрузочной гипоксии приведены на рис. 16–7. Они заключаются в:

•снижении парциального напряжения кислорода в венозной крови(венозная гипоксемия), оттекающей от гиперфункционирующей мышцы.

• уменьшении степени сатурации Hb эритроцитов венозной крови.

увеличении артерио‑венозной разницы по кислороду.

• повышении парциального напряжения углекислого газа (гиперкапния) в венозной крови,что является результатом активированного метаболизма в ткани мышцы.

развитии ацидозав пробах крови, взятой из вены гиперфункционирующей мышцы.

Ы ВЁРСТКА Вставить файл «ПФ Рис 16 07Типичные изменения газового состава при гипоксии перегрузочного типа»

Рис.16–7.Типичные изменения газового состава и рН крови при гипоксии перегрузочного типа. АВР — артерио‑венозная разница по кислороду.

Смешанный тип гипоксии



Просмотров 946

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!