Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Корпускулярно-волновой дуализм свойств вещества



Глава 28

Элементы квантовой механики

Корпускулярно-волновой дуализм свойств вещества

Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представ­ления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль ут­верждал, что не только фотоны, но и элек­троны и любые другие частицы материи наряду с корпускулярными обладают так­же волновыми свойствами.

Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной сто­роны, корпускулярные характеристики — энергия Е и импульс р, а с другой — волновые характеристики — частота v и длина волны К. Количественные соотно­шения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов:

E=hv, p=h/l. (213.1)

Смелость гипотезы де Бройля заключа­лась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопо­ставляют волновой процесс с длиной вол­ны, определяемой по формуле де Бройля:

l=h/p. (213.2)

Это соотношение справедливо для любой частицы с импульсом р.

Вскоре гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон (1881 — 1958) и Л. Джермер (1896—1971) обнаружили, что пучок электронов, рас­сеивающийся от естественной дифрак­ционной решетки — кристалла никеля,— дает отчетливую дифракционную картину. Дифракционные максимумы соответство­вали формуле Вульфа — Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычислен­ной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электро­нов (энергия »50 кэВ) через металличе­скую фольгу (толщиной »1 мкм).

Так как дифракционная картина ис­следовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку боль­шой совокупности электронов, но и каж­дому электрону в отдельности. Это уда­лось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабри­канту (р. 1907). Он показал, что даже в случае столь слабого электронного пуч­ка, когда каждый электрон проходит че­рез прибор независимо от других (проме­жуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракцион­ных картин, получаемых при короткой эк­спозиции для потоков электронов, в де­сятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива,

 

 

а присущи каждой частице в отдельно­сти.

Впоследствии дифракционные явления обнаружили также для нейтронов, про­тонов, атомных и молекулярных пучков. Это окончательно послужило доказатель­ством наличия волновых свойств микроча­стиц и позволило описывать движение микрочастиц в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой по формуле де Бройля (213.2). Открытие волновых свойств микрочастиц привело к появлению и развитию новых методов исследования структуры веществ, таких, как электро­нография и нейтронография (см. § 182), а также к возникновению новой отрасли науки — электронной оптики (см. § 169).

Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства до­лжны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с l=6,62•10-31 м. Такая длина волны лежит за пределами доступной наблюдению об­ласти (периодических структур с периодом d»10-31 м не существует). Поэтому счи­тается, что макроскопические тела про­являют только одну сторону своих свойств — корпускулярную — и не прояв­ляют волновую.

Представление о двойственной корпускулярно-волновой природе частиц ве­щества углубляется еще тем, что на части­цы вещества переносится связь между полной энергией частицы г и частотой v волн де Бройля:

e=hv. (213.3)

Это свидетельствует о том, что соотноше­ние между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фо­тонов, так и для любых других микроча­стиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике.

Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества корен­ным образом изменила представления о свойствах микрообъектов. Всем микро­объектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни части­цей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выраже­на словами советского физика-теоретика В. А. Фока (1898—1974): «Можно ска­зать, что для атомного объекта существу­ет потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микро­объекту, и состоит дуализм волна — частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно» (в сб.: Фило­софские вопросы современной физики.— М.: Изд-во АН СССР, 1959).



Просмотров 862

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!