Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Прохождение частицы сквозь потенциальный барьер. Туннельный эффект



Рассмотрим потенциальный барьер про­стейшей прямоугольной формы (рис. 298, а) для одномерного (по оси х)движения частицы. Для потенциального барьера прямоугольной формы высоты

U и ширины l можем записать

При данных условиях задачи классиче­ская частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при E>U), либо отразится от него (при Е<U) и будет двигаться в обратную сто­рону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же даже при E>U имеется отличная от нуля вероят­ность, что частица отразится от барьера и будет двигаться в обратную сторону. При E<U имеется также отличная от нуля вероятность, что частица окажется в области х>l, т.е. проникает сквозь барьер. Подобные, казалось бы, парадок­сальные выводы следуют непосредственно из решения уравнения Шредингера, опи­сывающего движение микрочастицы при условиях данной задачи.

Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид

(для области 2q2=2m (E-U}/h2).

Общие решения этих дифференциальных уравнений:

y(x)=A1eikx+B1e-ikx (221.2)

(для области 1); y2(х)=А2еiqx2е-iqx

(для области 2);

y3(x)=A3eikx+B3e-ikx (221.3)

(для области 3).

В частности, для области 1 полная волновая функция, согласно (217.4), бу-

 

 

дет иметь вид

В этом выражении первый член представ­ляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (соответствует части­це, движущейся в сторону барьера), а вто­рой — волну, распространяющуюся в про­тивоположном направлении, т. е. отражен­ную от барьера (соответствует частице, движущейся от барьера налево).

Решение (221.3) содержит также во­лны (после умножения на временной мно­житель), распространяющиеся в обе сто­роны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и рас­пространяющаяся слева направо. Поэтому коэффициент В3 в формуле (221.3) следу­ет принять равным нулю.

В области 2 решение зависит от со­отношений E>U или E<U. Физический интерес представляет случай, когда пол­ная энергия частицы меньше высоты по­тенциального барьера, поскольку при E<U законы классической физики одно­значно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1), q= ib — мнимое число, где

b=Ö(2m(U-E)/h).

Учитывая значение q и В3=0, получим решения уравнения Шредингера для трех областей в следующем виде:

y1(x)=A1eikx + B1e-ikx

(для области 1), y2(х)=А2е-bx2ebx (221.5) (для области 2),

y3(х)3eikx (для области 3).

В области 2 функция (221.5) уже не соответствует плоским волнам, распро­страняющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что

для частного случая высокого и широкого барьера, когда bl>>1, В2»0.

Качественный вид функций y1(x), y2(х) и y3(x) показан на рис. 298, б. Из рисунка следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же им­пульсом, т. е. с той же частотой, но с мень­шей амплитудой. Следовательно, получи­ли, что частица имеет отличную от нуля вероятность прохождения сквозь потенци­альный барьер конечной ширины.

Таким образом, квантовая механика приводит к принципиально новому специ­фическому квантовому явлению, получив­шему название туннельного эффекта,в ре­зультате которого микрообъект может «пройти» сквозь потенциальный барьер.

Для описания туннельного эффекта используют понятие коэффициента про­зрачностиD потенциального барьера, оп­ределяемого как отношение плотности по­тока прошедших частиц к плотности по­тока падающих. Можно показать, что

D=|A3|2/|A1|2.

Для того чтобы найти отношение |А31|2, необходимо воспользоваться условиями непрерывности y и y' на границах барьера х=х=l (рис. 298):

Эти четыре условия дают возможность выразить коэффициенты А2, а3, В1и В2 через А1. Совместное решение уравнений (221.6) для прямоугольного потенциаль­ного барьера дает (в предположении, что коэффициент прозрачности мал по сравне­нию с единицей)

где U — высота потенциального барьера, Е — энергия частицы, l — ширина барь­ера, Do — постоянный множитель, кото­рый можно приравнять единице. Из выражения (221.7) следует, что D сильно зависит от массы m частицы, шири­ны l барьера и от (U-E); чем шире барь­ер, тем меньше вероятность прохождения сквозь него частицы.

 

 

Для потенциального барьера произ­вольной формы (рис.299), удовлетворяю­щей условиям так называемого квазиклас­сического приближения (достаточно глад­кая форма кривой), имеем

где U=U(x).

С классической точки зрения прохож­дение частицы сквозь потенциальный барьер при E<U невозможно, так как частица, находясь в области барьера, до­лжна была бы обладать отрицательной кинетической энергией. Туннельный эф­фект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может про­никнуть, можно пояснить соотношением неопределенностей. Неопределенность им­пульса Dp на отрезке Dx=l составляет Dp>h/l. Связанная с этим разбросом в значениях импульса кинетическая энер­гия (Dp)2/(2m) может оказаться достаточ­ной для того, чтобы полная энергия части­цы оказалась больше потенциальной.

Основы теории туннельных переходов заложены работами Л. И. Мандельштама и М. А. Леонтовича (1903—1981). Тун­нельное прохождение сквозь потенциаль­ный барьер лежит в основе многих явле­ний физики твердого тела (например, яв­ления в контактном слое на границе двух

полупроводников), атомной и ядерной фи­зики (например, a-распад, протекание термоядерных реакций).



Просмотров 1021

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!