Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Глутамин и аспарагин. Механизм беопасного транспорта аммиака



Аммиак, образующийся в клетках различных органов и тканей в свободном состоянии не может переносится кровью к печени или к почкам в виду его высокой токсичности. Он транспортируется в эти органы в связанной форме в виде нескольких соединений, но преимущественно в виде амидов дикарбованных кислот, а именно гаютамина и аспаргина. Наибольшую роль в системе безопасного транспорта аммиака играет глютамин. Он образуется в клетках периферических органов и тканей из аммиака и пгутомата в энергозависимой реакции катализируемой ферментом глютаминсинтетазой. В виде глутамина аммиак переносится в печень или в почки где расщепляется до аммиака и глутомата в реакции катализируемой глутаминазой.

Требуется энергия АТФ. Концентрация пгутомина в крови на несколько порядков выше чем других аминокислот. Вторая реакция.

Ферменты мочевинообразования в полном объеме имеются только в печени. Меньшее значение имеет аналогичная система безопасного транспарта с участием аспаргиш. G. л Фермент аспарагинсинтетаза.. Энергозависимая реакция с участием АТФ (тратится 2 макроргических соединения АТФ и АДФ). Аммиак связывается в виде аспаргина. Доставляется в печень или в почки где с участием аспарокиназы происходит выделение свободного аммиака.

Есть еще один путь безопасного транспорта. Аммиак из мышц в печень транспортируется с участием аланина, который образуется в мышечной ткани из аммиака и пирувата. В гепатоцитах алакин в результате трансдезаминирования вновь расщепляется на аммиак и пируват.

Четвертый. Некоторую роль в транспорте аммиака играет глутаминовая кислота, которая образуется в клетках перефирических тканей из аммиака и а-кетоглютаровой кислоты в ходе реакции восстановительного аминирования.

 

Биосинтез белков.

Прцесс биосинтеза белка часто отождествляют с понятием трансляции, хотя эти

термины далеко не равнозначны. В понятие биосинтез белка водит 3 процесса

1.Во-первых подготовка пластического материала для сборки полилептидных цепей на

рибосомах (процесс рекогниции). v

2.Во-вторых сборка полипептидных цепей на рибосомах в соответствии с информацией

поставляемой на рибосому матричной РНК (трансляция).

З.В-третих процессинг полипептидных цепей с образованием функционально полноценных

белковых молекул.

Каждая тРНК в своей структуре имеет антикодон, который способен к комплементарному взаимодействию с соответствующим кодоном мРНК. Однако тРНК не имеют в своей структуре участков комплементарных той или иной аминокислоте.

Присоединение аминокислоты к своей тРНК осуществляется с помощью специальных ферментов - аминоацил-тРНК-синтетазы. Каждая эта синтетаза катализирует 2-х стадийную реакцию, на первом этапе которой в активном центре фермента связывается молекула своей аминокислоты и молекулы АТФ. Фермент катализирует реакцию оразования аминоациладенилата. Иногда эти реакции называют активацией аминокислот. На второй этапе к активному центру присоединяется соответствующая тРНК и в ходе реакции образуется аминоацит-тРНК.

В каждой клетке имеется минимум 20 различных аминоацил-тРНК-синтетаз (АА-тРНК-синтетаза),т.е. по одной на каждую из 20 аминокислот. Точность работы этих ферментов крайне важна, поскольку дальнейшая судьба аминокислоты, т.е. ее место включения в полипептидную цепь зависит только от тРНК.

Трансляция.

Сборка полипептидных цепей белков в соответствии с информацией поступающей из ядра с мРНК происходит на рибосомах. Рибосомы состоят из: 40S субъединица (малая, содержит 18SpPHK и 33 молекулы белков) и большая 60S субъединица (28SpPHK;5,BSpPHK; SSpPHK и дополнительно 45 белковых моелкул).

В составе рибосомы имеются 4 функциональных центра. 1 Центр связывания ма тричной РНК (малая суб.)2 Центр связывания тРНК. П цнтр 3 Центр связывания тРНК

полилелтидной цепи - А центр 4 Т центр. Пептидилтрансферазный. Обеспечивает образование пептидных связей в синтезируемом полипептиде. Процесс трансляции принято делить на три этапа: (учебник) 1. Инициации 2. Элонгации я. Терминацим

Процессинг полипептидных цепей белков.

Синтезируемая в ходе трансляции полипептидная цепь должна претерпеть ряд изменений прежде чем она превратиться в функционально полноценную молекулу. Естественно что для разных белков характер процессинга будет различным.

Полипептидная цепь приобретает вполне определенную для данного белка третичную дисульфидных мостиков между сульгидрильными группами (HS) цистииновых остатков

В случае образования неправильных дисульфидных мостиков возможна их перестройка. Эту функцию выполняют специальные белки, обнаруженные в большинстве тканей и получившие название - шепероны.

Аминокислотные остатки в составе полипептидных цепей белков могут подвергаться химической модификации. Например гидроксилирование, метилирование, йодирование (остатки тирозина в составе тириоглобулина).

В преобразовании сложных белков на рибосомах синтезируются лишь их полипептидные цепи. Присоединение небелковых группировок происходит в ходе процессинга. Например при синтезе гликопротеидов лолипептидные цепи подвергаются гликозилированию, т.е.

присоединение к ним или моносахаридных остатков или олигосахаридных блоков при

участии специальных ферментов - гликозилтрансфераз.

При синтезе фосфопротеидов полипептидные цепи подвергаются фосфорилированию с

участием ферментов протеинкиназ. При синтезе гликопротеидов и фосфопротеидов иджет ковалентная модификация синтезированных на рибосомах полипептидных цепей.

В ходе синтеза трансаминаз или биотин зависимых карбоксилаз к полипептидным цепям ферментов ковалентными связями присоединяются фосфоперидоксаль или биотин.

В ряде случаев небелковая группировка присоединяется к полипептидной цепи с помощью слабых взаимодействий (ионные, водородные связи и даже гидрофобные взаимодействия) . Например при образовании металлопротеидов ионы металлов соединяются с аминокислотными

остатками полипептидной цепи с помощью ионных или координационных связей.

 



Просмотров 1057

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!