Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Химический состав эмали зуба



Субмикроскопическими образованиями эмали являются кристаллы апатитоподобного происхождения. Каждая призма на своем пути [Oiams H, 1966] от поверхности эмали до дентина спиралеобразно поворачивается вокруг оси основного направления хода призм- Кристаллы располагаются параллельно ходу призм, плотно прилегая друг к другу. Такой ход призм обеспечивает наклон кристаллов от 0° до максимального наклона призм. Размер кристаллов варьирует от 0,1 до 0,4 нм в молодой эмали и от 5 до 10 нм в зрелой. Структурной единицей кристалла является элементарная ячейка, она неповторима для каждого типа кристаллов По размерам элементарной ячейки кристалла апатитов эмали, можно установить его природу. Так, для ячейки гидроксиапатита, состоящего из 42 атомов, высота ячейки «с» равна 0,688 им, а грань (шестигранника) «а» — 0,942 нм. Основываясь на результатах собственных исследований, мы считаем, что эмаль зубов состоит из апатитов многих типов. Именно из-за непостоянства параметров элементарных ячеек кристал­лов ее минеральная фаза может рассматриваться как апатитоподобное вещество. С возрастом усиливается минерализация эмали, что приводит к накоплению в ее толще фторапатита. Размеры элементарных ячеек кристаллов эмали пожилых лиц по кристаллографической оси "с" не превышают 0,688 им и по оси "а"—0,938 нм, что

соответсвует параметрам ячеек фтораппатита.

Возрастное усиление минерализации приводит и к макроскопическим изменениям поверхности эмали. Так, исчезают перикиматы и поверхность эмали становится гладкой. Наблюдается выраженное стирание зубов по вертикальной оси и сглаживание боковых поверхностей.

Минеральные компоненты. Минеральную основу зубов составляют изоморфные кристаллы апатитов.

гидроксиапатита, карбонатапатита, фторапатита, хлорапатита и др. Основными же компонентами являются гидроксиапатит—Са10(Р04)6(ОН)2 и восьмикальциевый фосфат—СавН2(Р04)й*5НгО. В целом минеральная фаза зубов — апатитоподобное вещество с общей формулой А10(ВО4)6Х2, где А—Са, Sr, Ва, СЛ, Pd..., В—Р, As V Cr, Si..., X—F, ОН, С1, Кроме указанных веществ, в твердых тканях зубов в незначительных количествах (ОД—10 мг/кг сухой массы) присутствуют фтор, свинец, олово, марганец, железо, алюминий, стронций, натрий, хлор, цинк, бром, вольфрам, медь, золото, серебро, хром, кремний и др.

Исследования свидетельствуют о том, что эмаль содержит по меньшей мере 41 элемент таблицы Менделеева Количество этих элементов зависит от характера питания человека, содержыния их в окружающей среде, продуктах

питания. Органические вещества эмали (1,6%) представлены в основном белками, кроме них в эмали содержаться лилиды, углеводы, лактат, цитрат и свободные аминокислоты. Белки органического матрикса эмали по аминокислотному составу преимущественно относятся к кератиноподобным белкам, но в отличие от кератина они богаты серином в основном в виде серин-фосфата и имеют небольшой молекулярный вес. Коллаген в эмали обнаружен в виде следов.

Сравнительно недавно в структуре эмали доказано наличие гликопротеидов, а так же небольшое количество Са-связывающего белка эмали (гаммокарбоксиглутоматный белок), этот белок с достаточно высокой емкостью и склонностью агрегации до тетрамеров в нейтральной среде. Содержание белков в эмали составляет 1,3%.

Углеводный состав эмали и дентина представлен в основном гликогеном. Из углеводных компонентов в эмали обнаружили глюкозу, маннозу, фукозу, ксилозу и рамнозу. Обычно они связаны с белками, т.е. входят в состав гликопротеидов эмали, частично в свободном виде. В поверхности эмали содержится в 10 раз больше углеводов чем в глубоких слоях это говорит о том, что приток идет за счет ротовой жидкости. Гликопротенды играют существенную роль и особенно в дентине, где их больше в динамической устойчивости твердых тканей зуба, поскольку именно гликопротеиды осуществляют химическую связь с белками, углеводами, и минеральными компонентами твердых тканей зуба, все это имеет значение в реминерализации.

Липиды эмали. 0,2% так же участвуют в процессах минерализации и ременирализации. Считают, что реминералгоация эмали в том числе при кариесе возможна только при сохранившейся структуре органического матрикса. Среди химических компонентов эмали и дентина в сравнительно большом количестве обнаружен цитрат. В эмали его примерно 0,1% в дентине 0,9%. Обнаружен лактат. Оба принимают участие в процессах минерализации.

Прочность и высокая плотность эмали объясняется высоким содержанием в ней минеральных компонентов примерно 95% на сухой вес. Минеральный компонент эмали представлен кристаллами гидроксиапатитов, карбонатапатитов, хлорапатитов, фторапатитов, цитратапатитов - кристаллиты. Из них превалируют более 70% гидроксиапатитов. Каждая кристаллическая решетка состоит из 18 ионов. Кристаллы гидрогсиапатита в эмали

В эмали так же содержится около 2% неапатнтных кристаллов - октокльцийфосфат, дикальнийфосфат, фосфат кальция Белки эмали

О наличии белков в составе эмали и дентина было известно уже более 100 лет назад, однако аминокислотный состав белков расшифрован лишь в последние два десятилетия с появлением соответствующих методов исследования. Важнейшей составной частью белка является коллаген. Благодаря проведению тончайшего аминокислотного анализа стало возможным определить структуру коллагена зубов. Гидролизат коллагена содержит 18 аминокислот, в том числе 26% глицина, 15% пролина и 14% гидроксипролина. Различия в структуре коллагена определенных тканей заключаются в пропорциональном соотношении лизина и гидроксилизина, хотя количество этих аминокислот остается постоянным (3—4%). Коллаген принадлежит к группе волокнистых белков, его молекула построена из цепочек аминокислот (две цепочки одинаковые, а третья отличается по составу аминокислот).

Тем не менее основной состав органического вещества эмали изучен. М. Stack (1954), работы которого стали классическими, показал, что в эмали существует кислоторастворимая фаза органических веществ (белки и пептиды) и кислотонерастворимая. Обе фазы содержат углеводные группы (галактоза, глюкоза, манноза, глюкуроновая кислота со следами фукозы и ксилозы), которые выявляют методом хроматографни.

 

101. Химический состав ДЕНТИН.

Основной по массе компонент зуба менее обызвествленный по сравнению с эмалью. Минеральных вещ-в в дентине примерно 70%. Главнейшими компонентами минеральной фазы является гидроксиапатит и карбонатапатит. Имеются так же фтор и хлор апатиты. Как и в эмали здесь сравнительно немного неапатитовых кристаллов. Кроме Са (24,8%) и фосфата (15,8%) в минеральной фракции дентина содержатся и другие остеотропные элементы Mg, К, Na, и анионы хлориды, фториды, карбонаты, ион-гидроксония. В дентине больше Mg, Na, F, карбоната по сравнению с эмалью. Воды здесь содержится больше (9,1%). Органические вещества дентина составляют 20,9% и представлены белками, липидами и углеводами причем в количественном отношении их больше чем в эмали. Из белков дентина основным

является коллаген, который содержит типичный для коллагена кости (коллаген 1-го типа) аминокислотный состав.

Большое количество глицина, пролина имеется оксипролин, аланин, отсутствуют серусодержащие аминокислоты -триптофан. Коллаген дентина связан с кислыми протеогликанами содержащими хондроитинсульфаты, они в свою очередь

содержит Са. Обнаружены здесь также различные гликопротеиды: сиалогликопротеид, группа белков - анилины.

фосфопротеины. Углеводный компонент органического матрикса дентина представлен в основном гликогеном. Одновременно здесь есть гетероолигосахариды гликопротеидов, хондроитинсульфаты, а так же галактоза и глюкоза,

Необходимо отметить, что структура и химический состав дентина могут изменяться в зависимости от состояния организма человека. Например нарушение структуры дентина наблюдаются при рахите и особенно при рахите устойчивом, резистентном к витамину D. Аналогичные нарушения структуры наблюдаются при отравлении солями свинца.

Липидов в дентине примерно 0,6% практически они малоизучены.

 

102. Химический состав и рольПУЛЬПы

Вариант рыхлой соединительной ткани. Клеточные элементы пульпы отличаются разнообразием. Помимо одонтоболастов здесь имеются фиброблатсы, макрофаги, плазматические клетки. Одонтобласты принимают участие в обменных процессах дентина и эмали. Они располагаются преимущественно в наружном слое пульпы, а их отростки

проникают в дентинные канальцы и идут на всем их протяжении.

Содержание воды в пульпе составляет примерно 72-74% остальное приходится на долю сухого остатка, состоящего из органических и неорганических компонентов.

Основными белками внеклеточного матрикса пульпы являются коллагеновые белки, формирующиеся в коллагеновые волокна. Эластические волокна в пульпе не найдены. Пульпа корневых каналов отличается от коронковой пульпы большим содержанием пучков коллагеновых волокон. В состав межклеточного матрикса входят протеогликаны, гликопротеиды, фосфопротеиды и нгокомолекулярные пептиды. Особенно богата гликопротеидами базальная мембрана сосудов пульпы зуба. Из углеводных компонентов преобладают здесь хондроитинсульфаты.

гетероолигосахариды, гликоген, глюкоза, уроновые кислоты.

Пульпа как любая ткань содержит липиды и различные метаболиты. Макромолекулы ткани пульпы зуба (белки и входящие в состав протеогликанов хондроитинсульфаты) обладают амфотерными свойствами. При физиологических значениях рН карбоксильные группы коллагена, гликопротеидов, протеогликанов создают отрицательный заряд межклеточного матрикса, это обуславливает не только поглощение чужеродных веществ, но и катионов Са, К, Na

Содержание белка в пульпе зуба составляет 52 ±3 мг/г. Гликогена 0,42 мг/г Особенность метаболизма пульпы.

1. Пульпа зуба является относительно высокой по сравнению с другими тканями интенсивностью окислительно-восстановительных процессов, а от сюда высокое потребление кислорода, т.е. интенсивное дыхание.

2. О высоком уровне обменных процессов свидетельствует наличие здесь пентозофосфатного цикла окисления глюкозы (интенсивно идут биосинтетическеие процессы). Наиболее высокий уровень этого цикла определяется в период активной продукции одонтобластами дентина, например при образовании вторичного цемента.

С помощью радиоизотопных методик 5 пульпе обнаружены активные процессы синтеза РНК, а значит и синтез соответствующих белков. Раскрыты закономерности функционирования одонтобластов в норме и при патологии.

Пульпа зуба богата ферментами с достаточно высокой активностью, что так же свидетельствует об интенсивном метаболизме данной ткани. Доказано, что углеводный обмен протекает здесь со значительной интенсивностью. В пульпе обнаружены практически все ферменты углеводного обмена (альдолаза, ЛДГ, гексокиназа, амилаза, фосфорилаза.) Обнаружены здесь дыхательные ферменты, ферменты цикла Кребса, различные формы эстераз, щелочная и кислая фосфотаза, здесь найдена глюкозо-6-фосфотаза (гликоген который здесь расщепляется может в виде глюкозы поступать в дентинную жидкость). Обнаружена АТФ-аза, аминопептидаза, трансферазы АлАт и АсАт, холиностераза и др. ферменты.

Обнаруженный комплекс ферментов позволяет характеризовать пульпу как ткань с высокой метаболической

активностью, что и обуславливает высокий уровень трофики, реактивности и защитные механизмы данной ткани зуба. Об этом свидетельствует например повышение активности многих ферментов пульпы при кариесе, пульпитах и др. патологических состояниях. При среднем и глубоком кариесе в ir/льпе повышается содержание гликогена.

 

103. Теории минерализации.

В кости содержится большое количество цитрата. В скелете сосредоточено примерно 90% все лимонной кислоты организма. Накапливается за счет цитратсинтазы одонтобластов. Важное свойство цитрата - вывсокая комплекеообразующая активность с ионами Са. Цитрат активирует кислые лизосомальные гидролазы Участвуют в процессах отложения солей Са и Р).

Минерализации кости предшествует синтез белков, гпикозаминогликанов, различных ферментов, макроэргов и др. Кости в отличии от твердых тканей зуба обладают способностью к минерализации. Полагали что кальцификация - простой процесс осаждения минеральных солей подчиняющихся законам

классической физической химии, при этом считали, что основным условием являются соответствущие концентрации

ионов Са и Р. Но кальцификация является сложным процессом в который вовлекается целый ряд соединений в том

числе белки и ферменты. В дальнейшем появились ферментативные теории осеофикиции.

1923 г.. Ведущую роль в процессе осеофикации принадлежит щелочной фосфотазе, т.е. под действием щелочной

фосфотазы происходит разрушение органических фосфосодержащих субстратов(глицерофосфат) и в результате

создается высокая концентрация ионов явление перенасыщения и последующее образование костной соли. Слабость теории: костная ткань содержит мало органических фосфатов, многие ткани содержат щелочную фосфатазу, но однако не все минерализуются.

Угнетение ферментов гликолиза и щикогенолиза сопровождается угнетением кальцнфнкации. была доказана необходимость АТФ для минерализации, поэтому появились другие теории сотяасно которым кристаллизацию инициируют компоненты органического матрикса обызвествляемых тканях. 1 Изучение функции коллагена в процессах минерализации позволило показать, что коллаген может инициировать нуклеацию апатитовых кристаллов на макромолекулах коллагеновых фибрилл, т.е. способен вызывать образование центров кристаллизации апатитов из

растворов фосфатов Са.

2 Свободный или связанный с белками хондроитинсульфат. Они интенсивно секретируются наряду с гликозаминогликанами, а затем подвергаются расщеплению лизосомальными гидролазами в образованием высокоактивных анионов. Предполагают, что биохимич., основу образования зародышевых кристаллов гидроксиапатита составляет реакция образования комплекса между коллагеном, АТФ, Са и хондроитинсульфатов Начало процесса минерализации объясняют в настоящее время усилением в остеобластах процессов распада гликогена и поступлением ацетилКоА в цикл Кребса, что приводит к выделению в окружающую среду цитрата и малата. Они способствуют растворению аморфоного фосфата Са. Во-вторых они создают оптимальную среду для деятельности кислых гидролаз выделяемых из лизосом остеобластов. Лизосомальные ферменты перестраивают органический матрикс кости.

 

104. Химический состав кости

Кости по праву считаю своеобразным депо минеральных веществ в организме. Здесь содержится примерно 99% Са, 87% Р, 50%Mg, 46%Na. В компактом веществе костей содержится в среднем 70% неорганических веществ, 20% органических и 10% воды. В губчатой кости соотношение иное: минеральные компоненты составляют 35-40%. органические 50-55% и вода 10-15%. Более 95% органического матрикса кости приходится на фибршшярный белок коллаген I типа. Коллаген костей имеет большое сходство с коллагеном мягких тканей: близость аминокислотного состава, идентичность строения полипептидкых цепей, однако здесь есть различия: а - больше оксилюиновых остатков, отсюда особая прочность поперечных сшивок.

б - серин чаще присутствует в виде фосфосерина.

в - в коллагеновые волокна входят так же пептиды богатые аспартатом и глутоматом.

Наличие фосфора а так же этих необычных пептидов считают, что имеют огромную значимость в процессах минерализации кости. Матрикс содержит так же примерно 16% неколлагеновых, специфичных для костной ткани белков: костный морфогенетический белок, глутоматные белки, связывающие Са, остеопонтин (фосфопротеин) остеокальцин, минералсвязывающие протеогликаны. В костной ткани всегда содержится альбумин, большинство тканиспецифичных неколлагеновых белков имеют сложный состав и относятся к гликопротеинам, фосфопротгинам, металлопротеинам и протеогликанам. Гликопротеиды костей содержат большее число сиаловой кислоты, чем гликопротеиды крови. Здесь практически нет уроновых кислот и сульфатов. В костях, а так же дентине, цементе и слюне найдены небольшие гамма карбоксиглутоматные белки. Они связаны с коллагеном а так же кристаллами гидроксиапатита. Эти белки легко образуют кальциевые соли и участвуют в регуляции связывания Са в кости, а так же зубной ткани. В органический метрике костной ткани входят гликозаминогликаны: основной представитель -хондроитин-4-сульфат, кератансульфат. Гликозаминогликаны принимают участие в формировании косного каркаса, Отложению минеральных солей обязательно предшествует синтез сульфатированных гликозаминогликанов. В костной ткани содержится гликоген является поставщиком энергии в процессе минерализации. Липиды кости принимают непосредственное участие в процессах минерализации. Много ферментов в частности лизосомаяьных, участвующих в резорбции кости. Фермента цикла Кребса. Характерна высокая активность щелочной фосфотазы и альдолазы.

 

105. Влияние витаминов на полость рта.

Витамин А Важную роль в нормальном развитии зубов играют витамины.Saliey (1959) отметил у крыс при недостатке витамина А гиперфункцию костных клеток альвеолярного отростка, что вызывает его утолщение. С дефицитом витамина А связано появление гиперкератоза и пролиферации базального слоя слизистой оболочки. Избыток витамина А приводит к аномалиям развития челюстей, языка и губ, а в зубах значительно уменьшается плотность дентина. Децифит витамина А сам по себе не вызывает специфических изменений мягких тканей пародонта.

К группе витаминов, играющих большую роль в возникно-вении заболеваний зубов и пародонта, относятся витамины D, К, Р. Существенный недостаток витамина D приводит к первичному поражению метаболизма кальция при формировании зубов и костей. Дефицит витамина D вызывает увеличение объема органического матрикса дентина из-за нарушения минерализации, задержку развития дентина, увеличение количества интерглобулярного дентина. Недостаток витамина D приводит также к нарушению формирования эмали и гипопластическим изменениям в ней. Витамин К необходим для образования протромбина в печени. При его недостатке отмечается тенденция к кровоточивости, в том числе и из десен после чистки, зубов или спонтанно У лзодей витамин К синтезируется бактериями в желудочно-кишечном тракте. Витамин К можно использовать для предотвращения кровотечения в ротовой полости.

Витамин Р обеспечивает целость капилляров, предотвращая их ломкость [Bourne О., 1943]. Его также используют в терапевтической практике для профилактики кровотечений. S. Kreshover и S. Burket (1946) предположили, что хрупкость капилляров, часто встречаемая у больных с пародонтозом, может быть частично обусловлена недостатком витамина Р. Однако использование его для лечения заболеваний пародон-та все еще находится в стадии эксперимента.

В результате экстирпации субмаксиллярных и сублингвальных слюнных желез при недостатке витамина Е у

животных происходило кровотечение из десен, расшатывание больших коренныз зубов и выделение гноя из карманов.

[Goldbach Н., 1946]. Отмечена благоприятная реакция при использовании витамина Е у больных, страдающих выраженным пародонтозом с минимумом местных раздражающих факторов [Lieb Н„ Mathis H., 1950].

Витамины группы В, фолиевая кислота, витамины РР и С В работах А. Э, Шарпенака и Э. П. Травите доказана роль дефицита витамина В1 в возникновении кариеса зубов. Гиповитаминоз В1 приводит к повышенной чувстви­тельности слизистой оболочки полости рта, нередко на ней обнаруживают маленькие пузырьки, симулирующие лишай. При недостатке витамина В2 (арибофлавиноз) могут развиваться воспалительные изменения в мягких тканях в виде глоссита, хейлита, себорейного дермита, а также поверхностного сосудистого кератита [ScbrcJ! 'A'., 1939]. Воспаление языка сопровождается атрофией сосочков. Степень исчезновения сосочков языка зависит от выраженности недостатка витамина В2.

Хейлит - одно из патологических изменений, чаще всего диагностируемое при недостатке витамина В2.

Недостаток витамина В2—не единственная причина хей-лита. Недостаток витамина В6, никотиновой кислоты, всего комплекса витаминов группы В, пантотеката кальция иди железа может вызывать сходные изменения.

Воспаление языка и стоматит могут быть самыми ранними клиническими признаками недостатка в организме витамина PP. В острой форме наблюдаются гиперемия языка, увеличение сосочков, за которыми следуют атрофические изменения и в результате образуется глянцевая поверхность. Язык при остром недостатке витамина РР ярко-красный, болезненный. При хроническом недостатке его язык может быть утонченным, с наличием трещин на поверхности, зубчатыми края-

Y человека при недостатке фолиевой кислоты наблюдается стоматит, который может сопровождаться

язвенным глосситом, хейлитом и хейлозом. Язвенный стоматит является ранним признаком токсического действия

антагонистов фолиевой кислоты, используемых для лечения лейкемии.

 

Содержание остаточного азота.

В крови 14,3-28,6 мМ/л

Суточное выведение - 20 - 35 гр. Клинико-диагностическое значение. Повышение остаточного азота в крови обозначается термином «азотемии. Азотемия может быть двух видов: абсолютной

(накопление в крови компонентов остаточного азота) и относительной (дегидратация при обезвоживании организма в раннем детском возрасте, например рвота, понос). Причины абсолютной азотемии могут быть две: ретендаонная (почечная) и продукционная (внепочечная). Ретешшонная азотемия вызывается задержкой азотистых шлаков при их нормальном образовании и наблюдается при нарушении выделительной способности почек, например при острых и хронических нефритах за счет повышения уровня мочевины и крови. При хронических нефритах стойкая азотемия указывает на развивающуюся недостаточность почек. Продукционная азотемия наблюдается при усиленном распаде белков и преобладании аминокислот, например при злокачественных новообразованиях. Повышение остаточного азота отмечается при кахексии неракового происхождения вызванной туберкулезом, диабетом и циррозом печени, при. крупозной пневмонии, острой желтой атрофии печени, сердечной недостаточности, гипофункция надпочечников, инфекционных заболеваниях (скарлатине, дифтерии).

Существует прямая связь между азотом мочевины крови и потреблением белка и обратная связь между скоростью экскреции мочевины и азотом мочевины крови. Повышение показателя имеет место:

а) при почечной недостаточности - остром и хроническом нефрите, остром канальцевом некрозе, при обструкцию! мочевыводящих путей;

б) при усилении метаболизма азота на фоне уменьшения почечного кровотока или нарушения функции почек, дегидратации (любой этиологии), а также при кровотечении

из верхних отделов желудочно-кишечного тракта(комбинация повышенного всасывания

белков крови и уменьшенного почечного кровотока); в) при уменьшении почечного кровотока - при шоке, недостаточности функции

надпочечников и иногда при сердечной недостаточности с явлениями застоя.

Снижение показателя имеет место при печеночной недостаточности, нефрозе (не осложненном почечной недостаточностью), при кахексии.

 

107. Витамин С, влияние на обмен тканей полости рта.

При недостатке витамина С происходит нарушение образования коллагена —основного вещества мукополисахаридов и межклеточного цементирующего, субстрата в мезенхимных тканях. При этом отмечаются замедленное образование кости и остеопороз. Недостаток витамина С приводит также к увеличению проницаемости капилляров, подверженности к травматическим кровотечениям гипореактивности сокращающихся элементов периферических кровеносных сосудов и замедленному кровотоку.

Гингивит на фоне выраженного отека и кровоточащие голубовато-красные десны описаны как классические признаки'недостатка витамина С. Однако не у всех больных, испытывающих недостаток витамина С, имеется гингивит. Он отсутствует, если нег местного раздражителя—зубного налета. ГипошПамнноз может, ухудшить реакцию десен на местное раздражение, увеличить отек и кровоточивость десен .Вероятно, недостаток витамина С является причиной заболеваний пародонта, которые так распространены во всех возрастах. Однако попытки установить зависимость меаау уровнем аскорбиновой кислоты в крови и распространенностью и тяжестью гингивита вызвали разнородные мнения. Некоторые утверждают, что действительно существует такая взаимосвязь, но большинство других с этим не согласны.

Высказано предположение, что у людей замедление развития альвеолярной кости происходит в^результате недостатка витамина С, но эпидемиологические исследования не подтвердили этой связи. При оценке результатов клинических исследований, в которых определяли уровень аскорбиновой кислоты в 'крови, отмечена ненадежность метода определения«ё во всей крови или в лейкоттитах.

Изменения в тканях пародонта при недостатке витамина С детально изучены у экспериментальных животных. В результате острого недостатка витамина С возникают отек тканей пародонта и кровотечение из них, развивается остеопороз альвеолярной кости. Однако острый недостаток витамина С не вызывает воспаления десен. Местное рачфа*ение является обязательным условием возникновения гингивита у экспериментальных жиьотных. Недостаток витамина изменяет реакцию на раздражение так, что десна становится отечной и кровоточивой. Недостаток витамина С также замедляет нормализацию пародонта. Выло установлено, что при дефиците витамина С не образуются пародонтапьные карманы. Для того чтобы они появились, необходимы также местные раздражители. При гипо­витаминозе С кярмяны имеют большую глубину, чем в других условиях. В результате острого недостатка витамин С реакция пародонта изменяется до такойстепени, что деструктивный процесс заканчивается выпадением зубов.

С неоостатком витамина С в организме многие исследователи слизывают возникновение и развитие некоторых стоматологических заболеваний, в частности кариеса зубов. Так, Вольгоф еще в 1929 году в опытах на животных показал, что при недостаточном содержании витамина С в пищевом рационе в первую очередь нарушается структура дентина. При этом в нем уменьшается содержание известковых солей, изменяется структура внутреннего слоя дентина—расширяется слой предентина.

Недостаток витамина С в организме нарушает синтез коллагена и превращения проколлагена в коллаген, имеющий

очень большое сходство с субстанцией, образующей дентин зуба

Задержка формирования коллагена связана с недостаточным образованием важной его составной части—гидро-оксипролина, который, в свою очередь, образуется из аминокислоты пролина под влиянием витамина С.

Некоторые авторы считают, что при недостатке витамина С в организме происходят дегенеративные превращения высокоспедашгизированных клеток (одонтобластов и остеобластов) в соединительнотканные. В результате вместо прочного дентина образуется неустойчивый хрупкий материал.

По данным Гоу, напротив, зубные ткани не способна удержжать соли кальция. Автор высказывает мысль о том, что применение препаратов кальция для предупреждения кариеса бесцельно без одновременного введения, в организм необходимых количеств витамина С.

В современном аспекте кариес рассматривается учеными к исследователями как одно из проявлений нарушения общего состояния организма, поэтому интерес к витамину С, принимающему участие в окислительно-восстановительных процессах, особенно велик.

У детей с "цветущим" кариесом выделение витамина С в моче было меньше, чем у детей, не имеющих кариеса.

Это пониженное выделение аскорбиновой кислоты авторы объясняют изменением обменных процессов в организме, в частности белкового обмена, связанного с развитием кариеса. Изучая влияние кариесогенной диеты на содержание аскорбиновой кислоты в крови и тканях, этим же авторам удалось показать, что возникновение кариеса неизменно сопровождается снижением содержания аскорбиновой кислоты как в крови, так и в тканях.

На основании полученных данных исследователи пришли к выводу, что дефицит аскорбиновой кислоты в организме имеет несомненное патогенетическое значение при кариесе.

С-авитаминоз (ЦИНГА) Цинга — кровавая болезнь. Она подкрадывается к человеку исподволь, незаметно. Очень часто люди не обращают внимания на легкое недомогание, головную боль, быструю утомляемость, потерю аппетита, плохой сон. А эти признаки свидетельствуют о начале первой стадии болезни. Люди продолжают работать, а состояние их все больше ухудшается и постепенно переходит во вторую стадию болезни. Вторая стадия характеризуется подавленным настроением, болезненными сердцебиениями и одышкой, ноющими болями в суставах и мышцах, напоминающими ревматизм. Кожные покровы бледнеют, наступают частые носовые кровотечения, а на коже, особенно нижних конечностей, около волосяных фолликулов появляются точечные кровоизлияния. Особенно характерным является разрыхление десен и кровоточивость их во время еды и при чистке зубов. В третьей стадии нарастают новые, еще более неприятные симптомы болезни. Мелкоклеточные кровоизлияния на коже сливаются в обширные кровоподтеки. Эти кровоподтеки возникают и в мышцах, и в суставах, и во внутренних органах. Из-за них мышечные боли становятся невыносимыми, суставы распухают, и больные лишаются возможности передвигаться слизистая оболочка ротовой полости подвергается омертвению, десны изъязвляются и кровоточат, зубы начинают выпадать. Четвертая, последняя стадия болезни характеризуется появлением обширных кровоизлияний в полость плевры, в сердечную сумку и в стенки кишечника. Деятельность жизненно важных органов больного становится затрудненной и при крайнем истощении организма наступает смерть.

 

108. Гормоны влияющее на обмен минерализованных тканей.

Депонирование и обмен Са в косной ткани контролируется паратгормоном, соматотропином, кортикостероидами. Парат гормоно влияет на концентрацию Са в плазме (повышает) в результате воздействия на кишечник, кости и почки. Эффект действия на костную ткань связан в основном со снижением Са-связываюгяей способности костей. Гормон после связывания с рецептором активирует аденилатциклазу мембран костных клеток и увеличивает поступление Са и эти клетки. Увеличение концентрации Са в остеокластах приводит к

1 угнетение цитратсинтазы 2 игибирование синтеза коллагена 3 активация лизосомальных ферментов, участвующих в рассасывании кости.

Тирокальцитонин наоборот ускоряет отложение Са в кости. Активация Са-евого насоса и ингибирование выхода Са

из костей вроде доказана. Совместно эти два гормона обеспечивают равновесие между процессами минерализации и деминерализации, поддерживая концентрацию Са и Р в нормальных пределах.

Соматотропин увеличивает включение в кости Р, Са и стронция, так же стимулирует продольный рост костей. Эти эффекты происходят за счет усиления синтеза белков.

 

109. Влияние питания на состояние зубов.

Метаболически незаменимые компоненты пищи не могут синтезироваться в организме и должны постоянно поступать извне. Дефицит незаменимых элементов немедленно сказывается на развитии тех органов, в состав которых они

входят или в образовании которых участвуют. При этом наблюдаются многочисленные патологические изменения,

включая атрофию мышц, слабость, потерю массы тела, анемию, лейкопению, отеки, пониженную способность образовывать антитела, определенные гормоны и ферменты, пониженную сопротивляемость инфекциям, медленное заживление ран, истощение организма.

Ткани полости рта также очень чувствительны к дефициту определенных компонентов пищи. Достаточно отметить, что десна, зубы, язык, слизистая оболочка щек являются тканями-мишенями, которые исторически использовались для диагностики дефицита белков в пище. Дефицит протеинов в период развития зубов приводит к уменьшению их размера и массы, нарушению структуры эмали зубов. Более выраженные изменения происходят в мягких тканях, где наблюдаются дегенерация соединительной ткани десны и периодоптальной связки, замедленное заживление ран и

атрофия эпителия языка. Остеопороз развивается в результате

пониженного отложения солей, уменьшения количества остеобластов и замедления морфодифференциации клеток соединительной ткани в остеобласты. Избыток углеводов в питании, особенно в период до прорезывания зубов, приводит к повышенной восприимчивости зубов к кариесу. Повышенное содержание в пище углеводов н недостаточное содержание белкс-в превращает диету человека в кариесогенную.

В результате экспериментов и клинических наблюдений установлено, что и интенсивность, и экстенсивность кариеса зубов зависят от частоты употребления ферментированных углеводов. Обширные исследования, проведенные в Швеции, показали, что у лиц, которые потребляли в год 94 кг сахара, гораздо чаще обнаруживали кариес зубов, чем у индивидуумов, съедавших за год 85 кг сахара. Сходные исследования провел , обследовав детей, находящихся в школах-интернатах Австралии. У школьников, в диете которых были резко ограничены сладости, кариес зубов наблюдался гораздо реже, чем у детей, поедавших сладости без ограничений. В экспериментах на животных установлено, что моно- и днсахариды обладают большей кариесогенностью, чем крахмал. Существует мнение, что из всех Сахаров сахароза наиболее кариесогенна. Не исключена возможность, что этот вывод часто делают потому, что

именно сахароза больше всего потребляется человеком. Об этом свидетельствует работы, в которых изучался зффект

замены сахарозы фруктозой или глюкозой. Результаты мало чем отличались: кариес зубов почти с одинаковой частотой встречался как у людей, потреблявших во время эксперимента сахарозу, так и у получавших иные сахара. Патогенетическая роль Сахаров сводится к созданию условий роста кариесогенных микроорганизмов, которые в свою очередь формируют зубной налет, способный аккумулировать кислоты как продукт их жизнедеятельности.

Данные литературы свидетельствуют о том, что большинство микроэлементов не оказывает специфического действия на распространенность стоматологических заболеваний. Исключением является фтор, роль которого & возникновении кариеса зубов доказана (при содержании в питьевой воде менее 0,7 мг/л). Однако многие вопросы, касающиеся микроэлементов, изучены еще недостаточно.

 

110. Микроэлементы.

Повышение Са и F в воде препятствует аккумуляции стронция- Выводится стронций с мочой. Повышенное поступление стронция вызывает заболевание Уровская болезн. Кости деминерализируются, деформируются, так же нарушется синтез Са-связывающих белков.

Navia (1977) попытался распределить микроэлементы на три группы: заменимые, незаменимые и токсичные. Нужно отметить, что эта классификация нечеткая, поскольку один и тот же элемент может быть и токсичным, и незаменимым, например фтор и селен. Однако, с точки зрения незаменимости, подобная группировка элементов оправдана.

Микроэлементы как составные компоненты веществ, участвующих в обменных процессах а организме или

регулирующих их, могут оказывать опосредованное действие на рези-стентность или, наоборот, восприимчивость зубов к кариесу. Данные экспериментальных исследований позволили 1. М. Na-via (1977) распределить минеральные элементы в три группы по их отношению к кариесу зубов:

I группа — элементы, способствующие возникновению кариеса(селен, магний, кадмий, свинец, кремний)

II группа—элементы с выраженным (фтор и фосфор) и маловыраженным (молибден, ванадий, медь, стронций, бор, литий, золото) противокариозным действием;

III группа—элементы, не оказывающие действия на возникновение кариеса (барий, алюминий, никель, железо, свинец, титан), и элементы, роль которых еще не изучена (марганец, цинк, бром, бериллий).

Кальций выполняет в организме человека ряд разнообразных и важных функций. Он входит в состав основного минерального компонента костной ткани — оксиапатита, михрокристаллы которого образуют жесткую структуру костной ткани. Ионы кальция придают стабильность клеточным мембранам, образуя связи между отрицательно заряженными группами фосфолипидов, структурных белков игликопротеидов. Важная роль принадлежит кальцию в осуществлении межклеточных сязей, обеспечивающих упорядоченную адгезши (слипание) клеток при тканеобразовании. Минеральный компонент костной ткани находится в состоянии постоянного обновления. В этом процессе участвуют два типа костных клеток: остеокласты, способствующие рассасыванию костного вещества и выходу освобождаемого кальция и фосфора в кровоток, и остеобласты, участвующие в процессах отложения фосфорно-кальцкевых солей, Еальцнфихацкк костной ткани. Следствием такого непрерывного обновления является рост костей скелета. У растущих детей скелет полностью обновляется за 1—2 года, у взрослых — за 10— 12 лет. Следовательно, минеральный компонент костной ткани находится в состоянии динамического равновесия с ионизированным кальцием и фосфором, растворенными в плазме крови. У взрослого человека за сутки из костей выводится до 700 мг кальция и столько же откладывается в них вновь. Костная ткань является не только важнейшей опорной структурой, но и главным депо кальция и фосфора, из которого организм извлекает их при недостаточном поступлении с пищей.

Фосфор Структурная функция неорганического фосфата состоит в том, что он вместе с кальцием входит в состав основного минерального компонента костной ткани — оксиапатита. Структурная функция принадлежит и

органелл: ядер, митохондрий, лизосом, а также таких мембранных структур, как миелин.

Фтор. Биологическая роль фтора связана главным образом с его участием в костеобразовании и процессах формирования дентина и зубной эмали. Достаточное потребление человеком фтора необходимо для предотвращения

оценки обеспеченности организма этим микроэлементом не разработаны.

 

111. Сахарные кривые.

Содержание глюкозы - 3,3-5,5 ммоль/л

Сахапные кривые здорового человека (1) в больных скрытым (2) и явным

(3) сахарным диабетом.

У здорового человека (1) исходное содержание сахара в крови нормальное (<5 ммоль/л). После приема нагрузки в течение часа вследствие всасывания глюкозы содержание сахара в крови умеренно возрастает. В ответ на развивающуюся гипергликемию усиливается секреция инсулина, глюкоза переходит в ткани и содержание её в крови к 3 часам снижается до исходного уровня или даже несколько ниже.

V больного скрытым сахарным диабетом (2) исходное содержание глюкозы в крови на верхней границе нормы (5,7 ммоль/л). После нагрузки подъем сахара в крови выражен в большей степени и к 3-му часу не достигает исходного содержания вследствие недостаточной выработки инсулина.

У больного явны.и сахарные диабетом (3) натощак определяется гнперглнкемня (9 ммоль/л). К 1-му часу выраженный подъем глюкозы в крови (15 ммоль/л) и к 3-му часу снижение незначительно, не достигает исходной величины вследствие инсулиновой недостаточности.

 

108. Патологические составные части мочи.

Белок. В нормальной моче человека содержится минимальное количество белка, присутствие которого не может быть доказано обыкновенными качественными пробами на белок. При ряде заболеваний, особенно болезнях почек, содержание белка в моче может резко возрасти (п ротеинури я). Источником белка мочи являются белки сыворотки крови, а также в какой-то степени белки почечной ткани. Протеинурии делятся на две большие группы: почечные и внепочечные.

Кровь. В моче кровь может быть обнаружена либо в форме красных кровяных ( клеток (гематурия), либо в виде растворенного кровяного пигмента (гемогло-бинури я). Гематурии бывают почечные и внепочечные. Почечная

процессах или травмах мочевых путей.. Глюкоза. Нормальная моча человека содержит минимальные количества глюкозы, которые не обнаруживаются обычными качестьенными пробами. Однако при патологических состояниях содержание глюкозы в моче увеличивается (глюкозурия). Например, при сахарном диабете количество глюкозы, выделяемое с мочой, может достигать нескольких десяткой граммов в сутки (см. главу 9).

Кетоновые (ацетоновые) тела. В нормальной моче зги соединения встречаются лишь в самых ничтожных количествах (не больше 0,01 г в сутки). Они не обнаруживаются обычными качественными пробами (нитропруссидные пробы Легаля, Ланге н др.). При. выделении больших количеств кетоновых тел качественные пробы становятся положительными—это явление патологически и называется кетону-рией. Например, при сахарном диабете ежедневно может выделяться до 150 г кетоновых тел.

Наряду с сахарным диабетом кетоновые тела выделяются с мочой при голодании, исключении углеводов из пиши, Бвлирубнн. В норме моча содержит минимальные количества бипирубина, которые не могут быть Обнаружены обычными качественными пробами. Повышенное выделение билирубина, при котором обычные качественные пробы

желчного протока и заболевании паренхимы печени. Выделение билирубина в мочу особенно сильно выражено при

обтурационных, желтухах.

Уробилин. Уробилин, точнее стеркобилин, всегда находится в незначительном количестве в моче, однако

концентрация его резко возрастает при гемолитической и печеночной желтухах.

Иорфирины. В норме моча содержит лишь очень малые количества порфиринов I типа (до 300 мкг в суточном количестве). Однако выделение порфиринов может резко возрастать (в 10—12 раз) при заболеваниях печени и периициозной анемии.

Глюкозурии.

Глюкозурня — появление глюкозы в моче, развивается при повышении содержания глюкозы в крови

свыше 10 ммоль/л. Как и гипергликемии, глюкозурии могут быть физиологическими и патологическими.

на почве стрессовых состояний.

Во вторую группу входят глюкозурии, возникающие в результате нарушений углеводного обмена, например, при сахарном диабете, остром панкреатите и др. Реже встречается глюкозурия почечного происхождения, связанная с неполной реабеорбцией глюкозы в почечных кзнальцах (почечный дшбет стероидный диабет, вторичная ренальная глюкозурю при хронических заболеваниях, почек). Как временное явление глюкозурия возникает при некоторых острых инфекциях и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга. Отражения морфином, стрихнином, фосфором также могут сопровождаться глюхозурией.

Снижение содержания глюкозы в крови менее 3,3 ммоль/л оассматоивается как гипогликемия.

Почечный порог 9,0 млмлоль/л

Изменения в крови и появление в моче.

Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.

Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечни­ков, гапопитуитаризме при печеночной недостаточности (иногда), функциональней гипогликемии и при приеме гипогликемических препаратов.

В моче

Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качест­венными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиоло­гических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабе те, реже при тиреотоксикозе, синдроме Иценко — Кушинга и т. д.

 

112. Холистерол - 3,9-6,8 мМ/л

Суточная потребность человека в холистероле составляет около 1 гр. Причем вся потребность в этом соединении может удовлетворяться с помощью эндогенного синтеза. Пищевой холистерол так же эффективно усваивается человеком. У здорового человека поступление холистерола с пищей и его эндогенный синтез хорошо сбалансирован. 'Гак например поступление с пищей в течении суток 2-3 гр. холистерола полностью блокирует его эндогенный синтез.

Основным органом, в котором синтезируется холестерол - печень.

Семейная гиперхолестеринемия.

При этом заболевании в организме нарушая олшгвл рецепторов для тип. В результате этого нарушена утилизация этих липопротеидов.

Поэтому в крови таких больных всегда повышенно содержание лпнп, холистерола, причем содержание холистерола может в несколько раз превышать верхнюю границу нормы. 3,5-6,8 млмоль/л) . Накопление в крови лпнп и холистерола быстро уже в юношеском возрасте приводит к развитию атеросклероза.

Тяжесть заболевания в значительной мере зависит от того один или оба гена белков-рецепторов дпнп дефектны. При дефекте одного из генов в клетках имеется половинное количество рецепторов для лпнп. Если дефектны оба гека, то рецепторов для лпнп вос-йще нет. Без соответствующего лечения больные редко доживают до 30 летнего возраста. Погибают они от инфаркта миокарда.

Атеросклероз.

Обнаруживается у всех без исключениях людей. Гиперлипопротеинемия и сопровождающая ее гиперхолистеринемия создает повышенную опасность к заболеванию атеросклерозом. Вероятность заболевания тем выше, чем выше холистериновый коэфицент атерогенности. К= (ХСлпонп + ХСлпнп) / ХСлпвп N < 3,5

Главное биохимическое проявление атеросклероза - отложение холистерина в стенках артерий. Атеросклеротические изменения начинаются с появления так называемых липидных пятен и полосок на внутренней поверхности артерий в аорте они появляются примерно с 3-х лет. В коронарных сосудах к 15-20 годам. На месте пятен и полосок образуются утолщения получившее название - атеросклеротические бляшки. Если бляшку разрезать, то из нее выдавливается желтая кашица, состоящая почти целиком из зфиров холистерина. Бляшки могут изъязвляться, язвы эарастаются соединительной тканью с образованием рубца в котором откладываются соли кальция. Стенки сосудов деформируются становятся жесткими, нарушается моторика сосудов, суживается их

просвет вплоть до полной закупорки.

Наиболее частые и опасные осложнения атерсклероза:

а) ишемическая болезнь сердца

б) инфаркты миокарда

в) инсульты

г) гангрена нижней конечности

Между отложениями холистерина в артериях и липопротеидами крови происходит двухсторонний обмен холистерина. Но что важно подчеркнуть при гиперхолистеринемии преобладает поток холистерина в стенки артерий. В крови увеличено содержание триглицеринов, холестерина, а так те содержанке атерогенных лп {лпонп, лпнп). Методы профилактики и лечения атеросклероза направлены на то, что бы усилить обратный ток холистерина из стенок артерий в кровь. Это достигается путем уменьшения гиперхолистеринемии. Применяют обычно малохолистериновую диету, лекарства увеличивающие экскрецию холистерина, лекарства ингибирующие синтез холистерина и даже прямое удаление холистерина путем гемодиффузии.

 

115. Содержание мочевой кислоты

Клинико-диагиостическое значение. Гипоурикурия, т. е. уменьшение выделения мочевой кислоты с мочой, отмечается при подагре, нефрите, почечной недостаточности; гиперурикурия, т. е. увеличение выделения мочевой кислоты с мочой,— при алимеятарной (пищевой) лейкемии, усиленном распаде нуклеопротеидов. У детей выделяется относительно больше мочевой кислоты, чем у взрослых. Выделение мочевой кислоты зависит от содержания пуринов в пище и интенсивности обмена нуклеопротеидов.

При подагре соли мочевой кислоты (ураты) откладываются в хрящах, мышцах и слизистой сумке суставов. Содержание мочевой кислоты в крови может быть повышено, а с мочой выделяется меньше, чем в норме. Повышение концентрации мочевой кислоты в плазме или сыворотке может сопровождать активацию катаболизма нуклеопротеинов (патологическое изменение крови, противолей-козная терапия), содержание мочевой кислоты увеличивается при использовании мочегонных групп тиазида, при уменьшении экскреции ее почками.

Повышение показателя имеет место при подагре, преэклампсии, эклампсии, лейкозе, полицитемии, терапии

противолейкозными препаратами, при почечной недостаточности, болезни накопления гликогена, синдроме

Леша — Найхана (Х-сцепленный дефицит пшоксантинпуанин-фосфорибозилтрансфе-разы), при синдроме Дауна. Снижение показателя имеет место при остром гепатите (иногда), лечении аллопуринолом, пробене-цидом. P/S мочевая кислота - конечный продукт обмена пуриновых оснований, входящих в состав нуклеопротеидов. В сыворотке - 0,22-0,46 мМ/л. Гиперурекимия - повышение мочевой кислоты в крови (главный симптом подагры).

 

116. Содержание билирубина в крови.

Билирубин общий 1,7-20,5 мкМ/л

прямой 0,9 - 4,5 мкМ/л

непрямой (свободный) 1,7 - 17,0 мкМ/л

Причина изменения содержания билирубина в крови.

При распаде гемоглобина образуется билирубин. В печени он связывается с

глюкуронатом и в виде диглюкуронида экскретируется с желчью. Билирубин накапливается

в плазме при печеночной недостаточности, закупорке желчевыносящих протоков, при

повышенном распаде гемоглобина. Изменение концентрации может быть связано с дефектом ферментных систем,

участвующих в метаболизме билирубина( напримаер, при отсутствии глюкуронил-трансферазы).

Прямой и непрямой билирубин сыворотки повышенв при остром и хроническом

гепатите, закупорке желчевыводящих путей (на уровне желчных протоков или

общего жолчного протока), при токсической реакции на многие лекарственные препараты,

химические вещества, токсины, при синдромах Дабин - Джонса и Ротора.

Непрямой билирубин сыворотки повышен при гемолитических анемиях, других

гемолитических реакциях, при отсутствии или дефиците глюкуронил-трансферазы

(например, при синдромах Жильбера и Криглера - Наджара).

Прямой и общий билирубин могут быть значительно повышены у здоровых людей после

Клинико-диагностическое значение. Ги-поурикурия, т- е. уменьшение выделения мочевой кислоты с мочой, отмечается при подагре, нефрите, почечной недостаточности; гиперурикурия, г"- е. увеличение выделения мочевой кислоты с мочой,— при алиментарной (пищевой) лейкемии, усиленном распаде нуклеопротеи-дов У детей выделяется относительно больше мочевой кислоты, чем у взрослых. Выделение мочевой кислоты зависит от содержания пуринов в пище и интенсивности обмена нуклеопротеидов.

При подагре соли мочевой кислоты (ураты) откладываются в хрящах, мышцах и слизистой сумке суставов.

Содержание мочевой кислоты в крови может быть повышено, а с мочей выделяться меньше чем в норме.

Повышение концентраци мочевой кислоты в плазме или сыворотке может сопровождать активацию катаболизма нуклеопроте-инов (патологическое изменение крови, противолей-козная терапия), содержание мочевой кислоты увеличивается при использовании мочегонных групп тиазида, лри уменьшении экскреции ее почками.

Повышение показателя имеет место при подагре,эклампсии, лейкозе, терапии

противолейкозными препаратами, при почечной недостаточности, болезни накопления гликогена (тип I), синдроме Леша — Найхана (Х-сцепленный дефицит гипоксантигауанин-фосфорибозилтрансфе-разы), при синдроме Дауна. Снижение показателя имеет место при остром гепатите (иногда), лечении аллопуринолом, пробене-цидом. Клинико-лиагностическое значение. Накопление в крови билирубина выше 27,36— 34.20 мкмоль/л (1.6—2 мг/100 мл) приводит к отложению его в тканях, вызывая желтуху. Увеличение содержания прямого (связанного) билирубина при обтураци-онной (механической) желтухе обусловлено переполнением желчных путей вследствие закупорки, разрыва их и последующего перехода желчи в русло крови. В крови накапливается прямой растворимый билирубин (би-дирубинурия), из мочи исчезает стеркобилиногеи, она приобретает темную окраску (как пиво), а га кала исчезает стеркобилин (ахолический кал).

Паренхиматозная желтуха возникает при гепатитах, циррозах печени и характеризуется резким увеличением содержания прямого (связанного) билирубина в крови. Печень снижает способность образования билирубин-глюкуронида, вследствие чего содержание непрямого билирубина в крови также увеличивается.

Гемолитическая желтуха возникает при усиленном гемолизе эритроцитов, что привоит к усиленному

образованию непрямого (свободного) билирубина, так как печень не успевает его связывать.

117. Кальций сыворотки.

Норма: общий - 2,1-2,6 ммоль/л СИ (9-12 мг«), ионизированный - 1,05-1,3 ммоль/л СИ (4,2- 5,2 «rl). На содержание кальция в плазме и других жидкостях организма влияет

питание, состояние эндокринной системы, почек, желудочно-кишечного тракта. Для

интерпретации результатов необходимо также определять концентрацию альбумина в плаз­ме, так как часть кальция находится в связанном с белками плазмы состоянии.

Повышение показателя имеет место при гиперпаратиреозе, секреции паратиреоидподобного гормона злокачественными опухолями, гипервитаминозе D, молочно-щелочном синдроме, остеолитических процессах, например, при множественной миеломе, метастазах опухоли в кости, болезни Паже, болезни Века, при иммобилизации и семейной гипокальциурии. Иногда повышение наблюдается при гипертиреозе и при приеме лекарственных препаратов из группы тиазидов.

Снижение показателя имеет место при гиполара-тиреозе. дефиците витамина D (рахит, остеомаляция), почечной недостаточности, гипопротеинемии, синдроме малабсорбции (илеите, недостаточности поджелудочной железы), тяжелом панкреатите с панкреонекрозом и при псевдогипопаратиреозе.

Фосфор неорганической сыворотки.

Норма: дети - 1,3-2,3 ммоль/л СИ (4-7 мг%), взрослые - 1-1,5 ммоль/л СИ (3-4,5 мг«).

На концентрацию неорганического фосфора в циркулирующей плазме влияют функция паращито-видных желез, витамин D, всасывание в кишиечнике, функция почек, метаболизм

Повышение показателя имеет место при почечной недостаточности, гипопаратиреозе и гилервитаминоэе.

Снижение показателя имеет место при гиперпа-ратиреозе, гиповитаминозе D (рахит, остеемаллцил), синдроме калабсорбцки (стеатсрел), приеме антацидов, которые связывают фосфаты в кишечнике, голодании или кахексии, хроническом алкоголизме (особенно при поражении печени), передозировке растворов, бедных фосфатами, введении углеводов (особенно внутривенно), нарушении функции почечных канальцев, использовании мочегонных группы тиазида, нарушениях кислотно-щелочного равновесия, диабетическом кетоацидозе (особенно при выздоровлении) и наследственной гипофаосфатемии; ногда при беременности и гипотиреозе.

119. Общая кислотность.

Общую кислотность желудочного сока измеряют в миллилитрах 0,1 н. раствора едкого натра, затраченного на нейтрализацию 1000 мл желудочного сока в присутствии индикатора фенолфталеина (зона перехода рН 8,3—10,0 ниже 8,2—бесцветный, выше 10,0—красный) В норме общая кислотность желудочного сока, взятого после пробного завтрака Боаса—Эвальда, для взрослого

человека колеблется в пределах 40-60 ммолъ/л,. Содержание свободной соляной кислоты в желудоч-ном соке измеряют в мгошшгграх 0,1 н раствора едкого натра,

затраченного на нейтрализацию 1000 мл желудочного сока в присутствии индикатора диметиламнно-азобегоола

(зона перехода рК 2,9—4,0, ниже 2,9—розово-красный, выше 4,0—желтый).

Соляная кислота, называемая «связанной», находится в солеобразном состоянии с белками и продуктами их переваривания Связанная соляная кислота зона перехода рН 3,7—5,2) В норме связанная соляная "кислота колеб­лется от 10 до 20 ммоль/л. Общая соляная кислота-сумма свободной и связанной соляной кислоты. Клинико-лигноетицеское значение При заболеваниях желудка кислотность может быть

пой, пониженной и повышенной. При язвенной болезни желудка или гиперацидном гастрите происходит увеличение содержания свободной соляной кислочы и общей кислотности (гиперхлоргидрия). При гипацидном гастрите или раке желудка наблюдается уменьшение количества свободной соляной кислоты и общей кислотности (ггаюхлоргидрия). При раке желудка, хроническом гастрите отмечается полное отсутствие соляной кислоты и значительное снижение общей кислотности (ахлор-гидрия). При злокачественном малокровии, при раке желудка наблюдается полное отсутствие соляной кислоты и пепсина (ахилия).

120. Диагностическое згиачеине определения активности аминотрансферазы.

Аспартатная трансаминаза (ACT), аланиновая трансаминаза (АЛТ) и пактатдегидрогеназа — это внутриклеточные ферменты, участвующие в обмене аминокислот и углеводов. В высокой концентрации содержатся в мышцах, печени, мозге. Увеличение концентрации этих ферментов в крови свидетельствует о некрозе или поражении прежде всего этих тканей

Повышение показателя имеет место при инфаркте миокарда (особено ACT), при остром инфекционном гепатите (АЛТ повышена обычно больше, чем ACT); циррозе печени (ACT повышена обычно боль­ше, чем АЛТ), при метастазах в печень или первичной опухоли печени. При поражении опухолевым процессом серозных полостей уровень ферментов повышается в транссудатах. ACT повышается при мышечной дистрофии, дерматомиозите и пароксизмальиой миоглобинурии.

Снижение показателей имеет место при недостаточности пиридоксина (витамина В6), часто в результате повторных процедур гемодиализа; при почечной недостаточности, при беременности.

Изоферменты лактатдегидрогеназы в сыворотке Существует пять изоферментов ЛДГ, каждый из которых является тетрамером, образованным субъединицами двух типов: Н и М. Количество изоферментов можно определить с помощью кинетических, электрофоретических, иммуно-логических методов или путем хроматографии. При электрофоретическом разделении подвижность изоферментов соотсетствует сывороточным белкам al, а2, Э, YU А и они нумеруются как 1 (иаиболее быстро движется).2,3,4 и .5 (наиболее медленно движется) Изофермент 1 присутствует в высокой концентрации в мышце сердца (тетрамер НННН), а также эритроцитах и в корковом веществе почек; изофермент 5 — в скелетной мышце (тетрамер ММММ) и в печени.

При инфаркте миокарда повышено содержание а-изоферментов, особенно ЛДГ-1; это увеличивает отношение ЛДГ1/ЛДГ2 (оно становится больше 1). Подобное увеличение встречается при инфаркте коркового вещества почек и при гемолитической анемии. Относительное повышение ЛДГ4 и ЛДГ5 имеет место при остром гепатите, тяжелом мышечном повреждении, дерматомио.чите, мышечной дистрофии.

Креатинфосфокиназа (КФК) сыворотки

Норма (варьирует в зависимости от метода): 10— 50 МЕ/л

КФК расщепляет креатинфосфат (при участии АДФ) с образованием креатина и АТФ. КФК много в скелетной и

сердечной мышцах, мозге.

Повышение показателя имеет место при мышечных повреждениях (инфаркт миокарда, травма мышцы), при

мышечной дистрофии, полимнознте, сильном мышечном напряжении (беге), гипотиреозе, инсульте. После инфаркта

миокарда КФК повышается быстро (за 3-5ч.) и сохраняется повышенной 2-3 дня (т.е. более короткий период,

чем ACT или ЛДГ). Показатель не повышается при инфаркте легкого и поражении паренхимы печени.

123. Кетоновые тела (диагностическое значение).

Содержание - до 30 мг/л.

Кетонемия и кетонурия.

В следствии недостаточности инсулина, что характерно для сахарного диабета, а так же при голодании, имеется относительная избыточность глкжагона (гормон панкреатической железы). По этой причине печень постоянно функционирует в режиме, который характерен для здоровых людей в постадсорбционном периоде. В это период в печени интенсивно окисляются жирные кислоты и интенсивно продуцируются кетоновые тела. Однако скорость синтеза кетоновых тел может превышать даже увеличенное в этих условиях потребление тканями. Развивается кетонемия. В норме кетоновых тел в крови меньше 2мг/дцл. При голодании может достигать до 30 а, при диабете до 350. При такой кетонемии развивается кетонурия. С мочой может выделяться до 5 гр кетоновых тел в сутки. Кетоновые тела являются кислотами и поэтому снижают буферную емкость крови, а при высоких концентрациях снижают и рН крови. Возникает кетоацидоз. В норме рН крови = 7,4. При котонемии рН крови может уменьшаться до 7, что приводит к резкому нарушению функций головного мозга вплоть до потери сознания и развития тяжелейшей комы. Необходима интенсивная терапия.

124. Диагностическое определение белка и активности амилазы.

Белок в нормальной моче находится в -виде следов, которые не открываются обычными реакциями, применяемыми в клинической лаборатории. При ряде заболеваний с мочой начинает выделяться заметное количество белка, начиная с долей грамма до 25 г в сутки. Появление белка в моче называется протеинурией или альбуминурией, поскольку моча содержит в основном сывороточный альбумин и лишь частично сывороточный глобулин. Нротеинурия может быть истинной или ложной. При истинной, или почечной, протеинурии белки сыворотки крови попадают в мочу через почки. Случайная, или ложная, протеинурия наблюдается при попадании в мочу слизи, крови, гноя, но не из почек, а из мочевыводящих путей.

Моча здоровых людей обладает низкой амилазнои активностью по сравнению с амилазой слюны. Определение активности а-амидазы в моче и сыворотке крови широко используется в клинике при диагностике заболеваний поджелудочной железы. В 1-е сутки заболевания амилазная активность увеличивается в моче и сыворотке кровк в десятки раз, а затем постепенно возвращается к норме. При почечной недостаточности амилаза в моче отсутствует. -

В детском возрасте увеличение активности амилазы наблюдается при эндемическом паротите, что указывает на одновременное поражение поджелудочной железы вирусом паротита. Вирус гриппа также поражает поджелудочную железу, но реже.



Просмотров 3558

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!