Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



III. КОСМИЧЕСКИЙ ФОН МИКРОВОЛНОВОГО ИЗЛУЧЕНИЯ 3 часть



Вернемся к 1929 году. Хаббл определил расстояния до 18 галактик по видимым светимостям их ярчайших звезд и затем сравнил эти расстояния с соответствующими скоростями галактик, определенными спектроскопически по их доплеровским сдвигам. Его заключение состояло в том, что имеется «приблизительно линейное соотношение» (т. е., попросту, пропорциональность) между скоростями и расстоянием. В действительности, взгляд на данные Хаббла оставляет меня в полном недоумении: как ему удалось сделать такое заключение, ведь галактические скорости кажутся совершенно не связанными с их расстояниями, имеется лишь слабый намек на рост скоростей с увеличением расстояния. На самом деле, мы и не должны ожидать, что для этих 18 галактик выполняется точное соотношение пропорциональности между скоростью и расстоянием, — все они слишком близки, ни одна не находится дальше, чем скопление в Деве. Трудно избежать заключения, что, опираясь либо на простые аргументы, изложенные выше, либо на соответствующие теоретические достижения, которые будут обсуждаться ниже, Хаббл просто знал тот ответ, который хотел получить.

Как бы там ни было, но к 1931 году данные заметно улучшились и Хаббл смог проверить пропорциональность между скоростью и расстоянием для галактик, имеющих скорость до 20 000 км/с. Вместе с доступными тогда оценками расстояний это приводило к выводу, что скорость возрастает на 170 км/с на каждый миллион световых лет расстояния; следовательно, скорость 20 000 км/с соответствует расстоянию 120 миллионов световых лет. Это число, равное отношению приращения скорости к приращению расстояния, общеизвестно как «постоянная Хаббла». (Она постоянна в том смысле, что пропорциональность между скоростью и расстоянием одинакова для всех галактик в данный момент времени, но, как мы увидим, постоянная Хаббла изменяется со временем в процессе эволюции Вселенной).

В 1936 году Хаббл, работая вместе со спектроскопистом Милтоном Хьюмасоном, смог измерить расстояние и скорость для скопления галактик Большая Медведица II. Было найдено, что это скопление удаляется со скоростью 42 000 км/с (14 процентов скорости света). Расстояние, оцененное тогда в 260 миллионов световых лет, соответствовало пределу возможностей телескопа Маунт-Вилсон, и работа Хаббла должна была остановиться. С вводом в действие после войны больших телескопов в обсерваториях Паломар и Маунт-Гамильтон другие астрономы возвратились к программе Хаббла (особенно Аллан Сэндейдж в обсерваториях Паломар и Маунт-Вилсон), и эта работа продолжается по сей день.

Общий вывод, сделанный в результате полувековых наблюдений, заключается в том, что галактики удаляются от нас со скоростями, пропорциональными расстоянию (по крайней мере, для скорости, не слишком близкой к скорости света). Конечно, как уже отмечалось, при нашем обсуждении Космологического Принципа это не означает, что мы находимся в каком-то специально выбранном или, напротив, неудачном месте в космосе; любая пара галактик разлетается с относительной скоростью, пропорциональной разделяющему галактики расстоянию. Наиболее важным изменением первоначальных выводов Хаббла явился пересмотр шкалы внегалактических расстояний; отчасти в результате пересчета соотношения период-светимость для цефеид Ливитт-Шепли, сделанного Вальтером Бааде и другими, оценки расстояний до далеких галактик дают в настоящее время цифры, примерно в десять раз большие, чем представлялось во времена Хаббла. Таким образом, сейчас считается, что постоянная Хаббла равна только примерно 15 км/с на миллион световых лет.

Что все это говорит нам о происхождении Вселенной? Если галактики разлетаются друг от друга, то когда-то они должны были быть ближе друг к другу. Точнее, если бы их скорости были постоянными, то время, необходимое для того, чтобы любая пара галактик достигла теперешнего взаимного удаления, как раз равнялось бы теперешнему расстоянию между ними, деленному на их относительную скорость. Но если скорость пропорциональна теперешнему расстоянию между галактиками, то это время одинаково для любой пары галактик — они все должны были быть близко друг к другу в один и тот же момент времени в прошлом! Принимая постоянную Хаббла равной 15 км/с на миллион световых лет, получаем, что время, прошедшее с тех пор, как галактики начали разлетаться, должно равняться миллиону световых лет, деленному на 15 км/с, или 20 миллиардов лет. Мы будем называть «возраст», вычисленный таким способом, «характерным временем расширения»; это есть просто обратная величина постоянной Хаббла. Истинный возраст Вселенной в действительности меньше характерного времени расширения, потому что, как мы увидим далее, галактики не двигались с постоянной скоростью, а несколько замедлялись под влиянием взаимного тяготения. Поэтому если постоянная Хаббла равна 15 км/с на миллион световых лет, то возраст Вселенной должен быть меньше, чем 20 миллиардов лет.

Иногда мы все это суммируем, говоря кратко, что размер Вселенной увеличивается. Это не означает, что Вселенная обязательно имеет конечный размер, хотя такое и возможно. Подобное выражение используется потому, что в любой заданный момент времени расстояние между любой парой типичных галактик увеличивается на одну и ту же относительную величину. За любой интервал времени, который достаточно мал для того, чтобы галактические скорости оставались примерно постоянными, увеличение расстояния между любой парой типичных галактик дается произведением их относительной скорости и интервала времени или, если использовать закон Хаббла, произведением постоянной Хаббла на расстояния между галактиками и времени. Но тогда отношение увеличения расстояния к самому расстоянию будет равно произведению постоянной Хаббла и пройденного времени, которое одинаково для любой пары галактик. Например, за промежуток времени, равный одному проценту характерного времени расширения (обратной величины постоянной Хаббла), расстояние между каждой парой типичных галактик увеличивается на один процент. Мы можем тогда сказать, выражаясь несколько небрежно, что размер Вселенной увеличился на один процент.

Я не хочу создавать впечатления, что все согласны с такой интерпретацией красного смещения. Ведь на самом деле мы не наблюдаем разбегающихся от нас галактик; все, в чем мы уверены, это то, что линии их спектров смещены в красную сторону, т. е. в сторону больших длин волн. Есть выдающиеся астрономы, которые сомневаются в том, что красные смещения имеют какое-то отношение к доплеровским сдвигам или к расширению Вселенной. Хальтон Арп из Хейльской обсерватории подчеркивал существование групп галактик, в которых некоторые галактики имеют красные смещения, сильно отличающиеся от остальных; если такие группы представляют собой реальные физические ассоциации соседних галактик, то едва ли они могут иметь сильно различающиеся скорости. Кроме того, Маартен Шмидт обнаружил в 1963 году, что некоторый класс объектов, хотя и имеет вид звезд, тем не менее обладает чудовищными красными смещениями, превышающими в некоторых случаях 300 процентов! Если такие «квазизвездные объекты» действительно так далеки, как указывают их красные смещения, они должны излучать грандиозные количества энергии для того, чтобы быть столь яркими. Наконец, совсем нелегко определить связь между скоростью и расстоянием на действительно больших расстояниях.

Существует, однако, независимый способ подтверждения того, что галактики на самом деле разлетаются так, как указывают их красные смещения. Как мы видели, эта интерпретация красных смещений приводит к выводу, что расширение Вселенной началось чуть меньше, чем 20 миллиардов лет назад. Следовательно, такая интерпретация подтвердится, если мы сможем найти любое другое свидетельство того, что Вселенная действительно имеет такой возраст. И в самом деле, имеется довольно много фактов, подтверждающих, что возраст нашей Галактики примерно 10–15 миллиардов лет. Такие оценки возникают как из анализа относительного содержания различных радиоактивных изотопов на Земле (особенно изотопов урана 235U и 238U), так и из расчета эволюции звезд. Определенно нет никакой прямой связи между скоростью радиоактивного распада или звездной эволюцией и красным смещением далеких галактик, поэтому такое совпадение делает весьма убедительным заключение, что возраст Вселенной, выведенный из постоянной Хаббла, действительно близок к истинному значению.

С исторической точки зрения интересно в связи с этим напомнить, что в 30-е и 40-е годы считали, что постоянная Хаббла значительно больше — около 170 км/с на миллион световых лет. Согласно нашим предыдущим рассуждениям, возраст Вселенной будет тогда равен одному миллиону световых лет, деленному на 170 км/с, что составляет около двух миллиардов лет или даже меньше, если мы примем во внимание гравитационное торможение. Но со времен изучения радиоактивности лордом Резерфордом было хорошо известно, что Земля значительно старше этого возраста; сейчас принято считать возраст Земли равным 4,6 миллиардов лет! Едва ли Земля может быть старше Вселенной, поэтому астрономы вынуждены были сомневаться в том, что красное смещение что-то говорит нам о возрасте Вселенной. Некоторые из наиболее хитроумных космологических идей 30-х и 40-х годов, включая, возможно, и теорию стационарного состояния, были порождены этим явным парадоксом. Может быть, именно устранение в 50-е годы парадокса возраста, благодаря десятикратному увеличению шкалы внегалактических расстояний, было существенным предварительным условием для появления космологии большого взрыва в качестве стандартной модели.

Та картина Вселенной, которую мы здесь описываем, представляет собой расширяющийся рой галактик. До сих пор свет играл для нас лишь роль «звездного посланца», несущего информацию о галактических расстояниях и скоростях. Однако в ранней Вселенной были совсем другие условия; как мы увидим, именно свет был главной составной частью Вселенной, а обычное вещество играло роль пренебрежимо малой примеси. Поэтому позднее нам пригодится, если сейчас мы повторим, что мы узнали о красном смещении в терминах поведения световых волн в расширяющейся Вселенной.

Рассмотрим световую волну, распространяющуюся между двумя типичными галактиками. Расстояние между галактиками равно времени распространения света, умноженному на скорость света, а увеличение этого расстояния за время путешествия света равно времени распространения света, умноженному на относительную скорость галактик. Когда мы вычисляем относительный рост взаимного расстояния, мы делим увеличение расстояния на среднее значение этого расстояния за время увеличения и находим, что при этом время распространения света сокращается: относительное увеличение расстояния между этими двумя галактиками (а следовательно, между любыми другими типичными галактиками) за время распространения света есть просто отношение относительной скорости галактик к скорости света. Но как мы видели раньше, это же отношение определяет относительное увеличение длины волны света за время его путешествия. Таким образом, в процессе расширения Вселенной длина волны любого луча света просто увеличивается пропорционально взаимному расстоянию между типичными галактиками . Можно представлять себе это так, будто гребни волн в процессе расширения Вселенной все дальше и дальше «растаскиваются» друг от друга. Хотя, строго говоря, наша аргументация справедлива только для малого времени распространения, но, соединяя последовательность таких небольших путешествий в одно целое, мы вправе заключить, что вывод верен и в общем случае. Например, когда мы смотрим на галактику ЗС295 и обнаруживаем, что длины волн в ее спектре на 46 процентов больше, чем в наших стандартных таблицах спектральных линий, мы можем заключить, что Вселенная сейчас на 46 процентов больше по размеру, чем она была тогда, когда свет покинул ЗС295.

До этого момента мы сосредоточивали внимание на вопросах, которые физики называют кинематическими и которые связаны с описанием движения без какого-либо рассмотрения сил, управляющих этим движением. Однако в течение столетий физики и астрономы пытались понять динамику Вселенной. Неизбежно это привело к изучению космологической роли той единственной силы, которая действует между астрономическим телами, — силы тяготения.

Как и следовало ожидать, первым, кто вступил в схватку с этой проблемой, был Исаак Ньютон. В знаменитой переписке с кембриджским филологом Ричардом Бентли Ньютон утверждал, что если бы материя Вселенной была равномерно распределена в конечной области, то она вся должна была бы стремиться упасть к центру «и в результате образовалась бы одна большая сферическая масса». Напротив, если бы материя была равномерно рассеяна в бесконечном пространстве, то не было бы центра, к которому она могла бы падать. В этом случае материя могла бы соединяться в бесконечное число сгустков, рассеянных по Вселенной; Ньютон предположил, что именно это могло быть причиной происхождения Солнца и звезд.

Трудность рассмотрения вопросов динамики бесконечной среды[11]в значительной степени парализовала дальнейший прогресс вплоть до появления общей теории относительности. Здесь не место объяснять эту теорию, во всяком случае, оказалось, что она менее важна для космологии, чем думали первоначально. Достаточно сказать, что Альберт Эйнштейн использовал существующую математическую теорию неевклидовой геометрии для того, чтобы объяснить тяготение как эффект искривления пространства и времени. В 1917 году, через год после завершения общей теории относительности, Эйнштейн попытался найти решение своих уравнений, которое описывало бы пространственно-временную геометрию Вселенной в целом. Следуя имевшим тогда хождение космологическим идеям, Эйнштейн специально искал решение, которое было бы однородным, изотропным и, к сожалению, статичным. Однако такого решения найти не удалось. Чтобы построить модель, удовлетворявшую указанным предварительным космологическим требованиям, Эйнштейн вынужден был «изуродовать» свои уравнения введением члена, так называемой космологической постоянной, который сильно портил элегантность первоначальной теории, но мог служить для уравновешивания силы гравитационного притяжения на больших расстояниях.

Эйнштейновская модель Вселенной была совершенно статичной и предсказывала отсутствие красных смещений. В том же 1917 году голландский астроном де Ситтер нашел другое решение модифицированной теории Эйнштейна. Хотя это решение было тоже статичным и потому приемлемым в соответствии с тогдашними космологическими идеями, его примечательной особенностью было предсказание красного смещения, пропорционального расстоянию! Европейские астрономы не знали тогда о существовании значительных красных смещений у туманностей. Однако в конце первой мировой войны новости из Америки о наблюдении больших красных смещений достигли Европы, и модель де Ситтера немедленно приобрела широкую известность. Действительно, в 1922 году, когда английский астроном Артур Эддингтон написал первую исчерпывающую книгу по общей теории относительности, он проанализировал существовавшие данные по красным смещениям, пользуясь моделью де Ситтера. Сам Хаббл говорил, что именно модель де Ситтера привлекла внимание астрономов к важности определения зависимости красных смещений от расстояния и, может быть, эту модель держал он в глубине своего сознания, когда обнаружил в 1929 году пропорциональность красных смещений расстоянию.

В наши дни такой упор на модель де Ситтера представляется неоправданным. С одной стороны, это на самом деле вообще не статическая модель — она кажется статической благодаря своеобразному способу введения пространственных координат, но расстояние между «типичными» наблюдателями в этой модели реально растет со временем, и именно это общее разбегание обусловливает красные смещения. С другой стороны, причина того, почему в модели де Ситтера красное смещение оказалось пропорциональным расстоянию, заключается просто в том, что эта модель удовлетворяет Космологическому Принципу, а, как мы видели, в любой теории, удовлетворяющей этому принципу, следует ожидать пропорциональности относительной скорости и расстояния.

Во всяком случае, открытие разбегания далеких галактик вскоре повысило интерес к космологическим моделям, которые были однородны и изотропны, но нестатичны. Космологическая постоянная оказалась поэтому уже ненужной в уравнениях гравитационного поля, и Эйнштейн даже выразил сожаление, что он вообще рассматривал подобное изменение своих исходных уравнений. В 1922 году советским математиком Александром Фридманом было найдено общее однородное и изотропное решение первоначальных уравнений Эйнштейна[12]. Именно эти фридмановские модели, основанные на исходных уравнениях поля Эйнштейна, а не модели Эйнштейна и де Ситтера, обеспечили математический фундамент большинству современных космологических теорий.

Существует два разных типа моделей Фридмана.

Если средняя плотность материи во Вселенной меньше некоторой критической величины или равна ей, то тогда Вселенная должна быть пространственно бесконечной. В этом случае современное расширение Вселенной будет продолжаться всегда.

В то же время, если плотность материи во Вселенной больше той же критической величины, тогда гравитационное поле, порожденное материей, искривляет Вселенную, замыкая ее на себя; Вселенная в этом случае конечна, хотя и неограничена, вроде поверхности сферы. (Это означает, что если мы отправимся в путешествие по прямой линии[13], мы не сможем добраться до какого-то угла Вселенной, а просто вернемся туда, откуда начали свой путь). Гравитационные поля достаточно сильны для того, чтобы в конце концов остановить расширение Вселенной, так что рано или поздно она начнет снова сжиматься к состоянию бесконечно большой плотности.

Критическая плотность пропорциональна квадрату постоянной Хаббла; для принятого в настоящее время значения этой постоянной (15 км/с на миллион световых лет) критическая плотность составляет 5 × 10-30 грамм на кубический сантиметр, или около трех атомов водорода на тысячу литров объема пространства.

Движение любой типичной галактики в моделях Фридмана в точности напоминает движение камня, подброшенного вверх с поверхности Земли. Если камень брошен с достаточно большой скоростью или, что приводит к тому же результату, если масса Земли достаточно мала, то камень будет постоянно замедляться, но, тем не менее, сможет улететь в бесконечность. Это соответствует случаю, когда космическая плотность меньше критической плотности. Напротив, если камень подброшен с недостаточно большой скоростью, то он достигнет некоторой максимальной высоты, а затем полетит обратно вниз. Это соответствует космической плотности больше критической.

Из этой аналогии ясно, почему невозможно найти статические космологические решения уравнений Эйнштейна — ведь мы не удивляемся тому, что камень улетает от поверхности Земли или падает на нее, но вряд ли мы ожидаем увидеть этот камень неподвижно висящим в поднебесье. Эта же аналогия позволяет избежать часто встречающегося неправильного толкования понятия расширяющейся Вселенной. Галактики разлетаются не потому, что какие-то мистические силы расталкивают их, точно так же как летящий вверх камень в нашей аналогии не отталкивается Землей. На самом деле галактики разлетаются друг от друга потому, что они были отброшены в стороны каким-то взрывом в прошлом.

Хотя этого не понимали в 20-е годы, но многие детальные свойства моделей Фридмана могут быть количественно рассчитаны с помощью указанной аналогии, без всякого обращения к общей теории относительности. Чтобы рассчитать движение любой типичной галактики по отношению к нашей Галактике, нарисуем сферу с нашей Галактикой в центре и интересующей нас галактикой на поверхности; движение этой галактики будет таким, как будто масса Вселенной состоит только из вещества внутри сферы, а снаружи нет ничего. Дело обстоит так, как если бы мы выкопали пещеру, уходящую далеко в глубь Земли, и стали наблюдать, как в ней падают тела, — мы обнаружили бы, что ускорение свободного падения по направлению к центру Земли зависит только от массы вещества, находящегося ближе к центру, чем наша пещера, т. е. будто поверхность Земли находится на дне пещеры. Этот примечательный результат воплощен в теореме, справедливой как в ньютоновой, так и в эйнштейновской теории тяготения и основанной только на сферической симметрии изучаемой системы; вариант этой теоремы, выполняющийся в рамках общей теории относительности, был доказан в 1923 году американским математиком Дж. Д. Биркгофом, но ее значение для космологии не было осознано в течение десятилетий.

Мы можем использовать эту теорему для того, чтобы вычислить критическую плотность в моделях Фридмана (рис. 3). Если мы нарисуем сферу с нашей Галактикой в центре и какой-то удаленной галактикой на поверхности, то для вычисления скорости отрыва[14], т. е. той скорости, которой должна обладать галактика на поверхности сферы, чтобы иметь возможность удалиться в бесконечность, нам надо учесть массу галактик внутри сферы. Оказывается, что эта скорость отрыва пропорциональна радиусу сферы — чем массивнее сфера, тем быстрее нужно двигаться, чтобы оторваться от нее. Но закон Хаббла утверждает, что действительная скорость галактики на поверхности сферы также пропорциональна радиусу сферы, т. е. расстоянию до нас. Следовательно, хотя скорость отрыва зависит от радиуса, отношение действительной скорости галактики к скорости отрыва не зависит от размеров сферы; это отношение одинаково для всех галактик и не зависит от того, какую из них мы возьмем за центр сферы. В зависимости от значений постоянной Хаббла и космической плотности каждая галактика, движущаяся по закону Хаббла, либо имеет скорость больше скорости отрыва и будет удаляться в бесконечность, либо имеет скорость меньше скорости отрыва и приблизится к нам через какое-то время в будущем. Критическая плотность есть просто та величина космической плотности, при которой скорость отрыва каждой галактики в точности равна скорости, даваемой законом Хаббла. Критическая плотность может зависеть только от постоянной Хаббла, и оказывается, что она пропорциональна ее квадрату (см. математическое дополнение 2).

 

Рис. 3. Теорема Биркгофа и расширение Вселенной.

Показан ряд галактик со скоростями по отношению к данной галактике G , отмеченными длинами и направлениями сплошных стрелок. (В соответствии с законом Хаббла эти скорости взяты пропорциональными расстоянию до G .) Теорема Биркгофа утверждает, что для вычисления движения галактики А по отношению к G , необходимо принять во внимание лишь массу, содержащуюся внутри сферы, проведенной вокруг G и проходящей через А , которая показана здесь пунктирной линией. Если А не слишком далека от G , гравитационное поле вещества внутри сферы будет умеренным и движение А можно рассчитать с помощью правил ньютоновой механики.

 

 

Детальная временная зависимость размера Вселенной (т. е. расстояния между любыми типичными галактиками) может быть получена с помощью аналогичных аргументов, но результат оказывается довольно сложным (рис. 4). Однако имеется один простой результат, который будет позднее очень важен для нас. В раннюю эпоху Вселенной размер ее менялся в зависимости от времени по простому степенному закону: время в степени две трети, если можно пренебречь плотностью излучения, или время в степени одна вторая, если плотность излучения превышает плотность вещества (см. математическое дополнение 3). Один аспект фридмановских космологических моделей, который нельзя понять без общей теории относительности, — это связь между геометрией и плотностью: Вселенная открыта и бесконечна или замкнута и конечна соответственно тому, больше или меньше скорость галактик, чем скорость отрыва.

 

Рис. 4. Расширение и сжатие Вселенной.

Для двух возможных космологических моделей показано взаимное расстояние между типичными галактиками (в произвольных единицах) как функция времени. В случае «открытой Вселенной» Вселенная бесконечна, плотность меньше, чем критическая плотность, и расширение, хотя и замедляясь, будет продолжаться всегда. В случае «закрытой Вселенной» Вселенная конечна, плотность больше, чем критическая плотность, и расширение в конце концов прекратится, сменившись сжатием. Эти кривые рассчитаны с помощью эйнштейновских уравнений поля без космологической постоянной для Вселенной, в которой преобладает вещество.

 

 

Один из способов узнать, превышают или нет галактические скорости скорость отрыва, заключается в измерении степени их замедления. Если это замедление меньше (или больше) некоторой величины, тогда скорость отрыва достигается (или нет). На практике это означает, что нужно измерить кривизну графика зависимости красного смещения от расстояния для очень далеких галактик (рис. 5). При переходе от более плотной конечной Вселенной к менее плотной бесконечной Вселенной кривая этой зависимости становится на очень больших расстояниях более пологой. Изучение формы кривой красное смещение-расстояние на больших расстояниях часто называют «программой Хаббла».

 

Рис. 5. Красное смещение как функция расстояния.

Здесь показано красное смещение как функция расстояния для четырех возможных космологических теорий. (Чтобы быть точным, под «расстоянием» здесь подразумевается «расстояние по светимости» — расстояние, вычисленное для объекта известной собственной или абсолютной светимости из наблюдений его видимой светимости.) Кривые, помеченные надписями «удвоенная критическая плотность», «критическая плотность» и «нулевая плотность», вычислены в модели Фридмана с использованием эйнштейновских уравнений поля для Вселенной с преобладанием вещества без космологической постоянной; они отвечают соответственно Вселенной, которая закрыта, чуть-чуть открыта и открыта (см. рис. 4). Кривая, помеченная надписью «стационарное состояние», относится к любой теории, в которой вид Вселенной не меняется со временем. Современные наблюдения находятся в плохом согласии с кривой «стационарного состояния», но они не дают возможности сделать определенный выбор среди других возможностей, так как в теориях нестационарного состояния галактическая эволюция делает очень проблематичным определение расстояния. Все кривые построены для значения постоянной Хаббла, равного 15 км/с на миллион световых лет (соответствующего характерному времени расширения 20 000 миллионов лет), но эти же кривые можно использовать для любого другого значения постоянной Хаббла путем простого изменения масштаба всех расстояний.

 

 

Хаббл, Сэндейдж и в последнее время ряд других ученых вложили в эту программу колоссальные усилия. До сих пор результаты были весьма неопределенны. Проблема заключается в том, что при вычислении расстояний до далеких галактик нельзя выбрать в качестве индикаторов расстояния цефеиды или ярчайшие звезды; вместо этого мы вынуждены определять расстояние по видимой светимости самих галактик. Но откуда мы знаем, что те галактики, которые мы изучаем, имеют одну и ту же абсолютную светимость? (Напомним, что видимая светимость — это мощность излучения, принимаемая нами на единицу площади телескопа, а абсолютная светимость — полная мощность, излучаемая астрономическим объектом во всех направлениях; видимая светимость пропорциональна абсолютной светимости и обратно пропорциональна квадрату расстояния.) Имеется страшная опасность (из-за эффектов отбора) — когда мы смотрим все дальше и дальше, мы стремимся отобрать галактики со все большими и большими абсолютными светимостями. Еще более тяжелой проблемой является эволюция галактик. Когда мы смотрим на очень далекие галактики, мы видим их такими, какими они были миллиарды лет назад, когда световые лучи начали свое путешествие к нам. Если типичные галактики тогда были ярче, чем сейчас, то мы недооцениваем истинное расстояние до них. Одна из возможностей, обсуждавшаяся совсем недавно Дж. П. Острикером и С.Д. Тримейном из Принстона, заключается в том, что наиболее крупные галактики эволюционируют не только потому, что эволюционируют отдельные звезды в них, но и потому, что эти галактики пожирают маленькие соседние галактики! Пройдет много времени, прежде чем мы сможем быть уверенными в том, что имеем адекватное количественное понимание этих различных типов галактической эволюции.

Лучший вывод, который можно в настоящее время получить из программы Хаббла, заключается в том, что замедление далеких галактик кажется довольно маленьким. Это должно означать, что галактики движутся со скоростью, превышающей скорость отрыва, так что Вселенная открыта и будет продолжать расширяться всегда. Это хорошо согласуется с оценками космической плотности; видимая материя в галактиках, как представляется, дает плотность, составляющую не более нескольких процентов критической плотности. Однако и здесь имеется большая неопределенность. По оценкам последних лет массы галактик все время возрастали.

Кроме того, как указали Джордж Филд из Гарварда и другие, может существовать межгалактический газ из ионизованного водорода, который может обеспечить критическую космическую плотность материи и который все еще ускользает от наблюдения.

К счастью, совсем не обязательно прийти к определенному решению относительно крупномасштабной геометрии Вселенной для того, чтобы делать какие-то заключения о ее начале. Причина в том, что Вселенная имеет нечто вроде горизонта и этот горизонт сужается тем быстрее, чем ближе рассматриваемый момент времени к самому началу.



Просмотров 496

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!