Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



ФАКТОРЫ ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ




 




естественные барьеры — кожа, слизистые оболочки, первые всту­пают в контакт с возбудителем инфекций;

система фагоцитов, включающая нейтрофилы и макрофаги;

система комплемента (совокупность сывороточных белков), тесно взаимодействующих с фагоцитами;

интерфероны;

различные вещества, чаще всего белковой природы, участвую­щие в реакциях воспаления, фибринолиза и свертывания крови. Некоторые из них (лизоцим) обладают прямым бактерицидным действием;

систему естественных (нормальных) киллеров, не обладающих антигенной специфичностью (Т- и К-киллеры).

ЕСТЕСТВЕННЫЕ БАРЬЕРЫ

Главная роль в обеспечении барьерной функции отводится коже, которая, будучи неповрежденной, непроницаема для боль­шинства инфекционных агентов. Способность кожи к десквама-ции клеток обеспечивает механическое удаление агента. Воздей­ствие молочной кислоты и жирных кислот, содержащихся в поте и секретах сальных желез и обусловливающих низкое значение рН, оказывается губительным для большинства бактерий. Исключе­ние составляет Staphylococcus aureus, часто инфицирующий воло­сяные фолликулы и железы.

Секрет, выделяемый мукоцеллюлярным аппаратом бронхов, желудка, кишечника и других внутренних органов, действует как защитный барьер: препятствует прикреплению бактерий к эпите­лиальным клеткам и механически удаляет их за счет движения ресничек эпителия (при кашле, чихании).

Вымывающее действие слез, слюны, мочи способствует защите эпителия от повреждений, вызванных в результате деятельности патогенных агентов. Во многих биологических жидкостях, секре-тируемых организмом, содержатся вещества, обладающие бакте­рицидными свойствами (например, соляная кислота в желудоч­ном соке; спермин и цинк в сперме; лизоцим в слезах, носовых выделениях и слюне; лактопероксидаза в молоке).

Благодаря микробному антагонизму, связанному с присутстви­ем нормальной бактериальной флоры, угнетается рост ряда потен­циально патогенных бактерий и грибов вследствие конкуренции за необходимые питательные вещества или выработки некоторых веществ (кислоты). Например, патогенная флора влагалища угне­тается молочной кислотой, которая вырабатывается одним из ви­дов бактерий — комменсалов, метаболизирующих гликоген, сек-ретируемый клетками эпителия влагалища. Защитной является и фильтрационная функция лимфатических узлов.


Если же микроорганизмы все же преодолевают эти естествен­ные барьеры макроорганизма, то в действие вступают следующие два способа защиты: разрушение их ферментами либо «поедание» клетками — фагоцитоз.

СИСТЕМА ФАГОЦИТОВ

И. И. Мечников определил, что ее представляют два типа кле­ток: микрофаги (полиморфноядерные нейтрофилы) и макрофаги, трансформирующиеся из моноцитов, которые задерживаются в тканях. Они образуют систему мононуклеарных фагоцитов.

Всем фагоцитам присущи следующие функции: миграция и хе­мотаксис; адгезия и фагоцитоз; цитотоксичность; секреция гидро-лаз и других биологически активных веществ.

Защитную функцию клеток, способных поглощать и перевари­вать микробы, впервые показал И. И. Мечников и назвал это яв­ление фагоцитозом.

Различают фагоцитоз завершенный и незавершенный. Фагоци­тарная реакция осуществляется поэтапно. Завершенный фагоцитоз, заканчивающийся полным разрушением микроорганизма, вклю­чает четыре стадии (рис. 4.10):

I. Положительный таксис, или приближение фагоцита к ми­
кробу;

II. Адгезия, или прилипание фагоцита к микробу,

III. Впячивание наружной мембраны фагоцита с последующим образованием фагосомы и ее слияние с лизосомой;

IV. Инактивация и разрушение микробов в фаголизосоме, проявляющиеся набуханием, фрагментацией и лизисом с пол­ной деградацией до аминокислот и низкомолекулярных соедине­ний. Если микробные антигены разрушаются частично, вслед за фагоцитозом начинается антителообразование.

/ стадия ║ стадия

Фагоцит →● Фагоцит ●Адегезия

III стадия N стадия

Фагоцит

Впячивание Фагояизосома Протеолиз

Мембраны

Рис. 4.10. Стадии завершенного фагоцитоза


 




Некоторые виды микроорганизмов и особенно поглощенные вирусы проявляют большую устойчивость к лизосомальным анти­микробным веществам или даже размножаются внутри фагоцита. Такой незавершенный вид фагоцитоза чаще наблюдается в нейтро-филах и заканчивается их гибелью или фагоцитированные микро­бы выталкиваются из них. Нередко гранулоциты с размноживши­мися в них бактериями становятся объектом фагоцитоза для мак­рофагов. Следует подчеркнуть, что в отличие от нейтрофилов, ко­торые поглощают и переваривают в основном истинных бактерий, макрофаги фагоцитируют спирохеты, актиномицеты, грибы, про­стейшие, вирусы, атрофирующиеся, омертвевшие или злокачест­венные перерожденные клетки.

Нейтрофилы (полиморфноядерные лейкоциты) — ко-роткоживущие клетки, способные к хемотаксису и фагоцитозу. В нейтрофилах различают три типа гранул:

первичные, азурофильные, содержат набор разнообразных гидро-лаз — A,D,E катепсины, 5-нуклеотидазу, бета-галактозидазу, арил-сульфатазу, бета-глюкуронидазу, эластазу, коллагеназу, катионные белки, миелопероксидазу, лизоцим, кислые мукополисахариды;

вторичные «специфические» гранулы содержат лактофер-рин, лизоцим, щелочную фосфатазу, белок, связывающий ви­тамин В12;

третичные гранулы похожи на обычные лизосомы и содержат кислые гидролазы.

Таким образом, гранулы нейтрофилов содержат набор фермен­тов, достаточный для деградации всех или многих липидов, поли­сахаридов и белков чувствительных бактерий, что приводит к их значительному повреждению в считанные часы.

Моноциты и макрофаги отличаются высокой фа­гоцитарной активностью. Продукты этих клеток — монокины — действуют на многие клетки других типов. Моноциты могут участвовать как в воспалительных, так и противовоспалительных процессах: способствовать созреванию предшественников лейко­цитов, влиять на систему комплемента, свертывание крови, обмен кининов, служить основным источником метаболитов арахидоно-вой кислоты, а также оказывать токсическое действие на опухоле­вые клетки и микроорганизмы.

Макрофаги играют важную роль в формировании устойчи­вости организма к инфекции. Они обладают фагоцитарной актив­ностью, значительной подвижностью и способностью образовы­вать токсические метаболиты кислорода, а также набором мощ­ных гидролитических ферментов. В отличие от нейтрофилов у макрофагов замедленная, но более продолжительная реакция на внешние стимулы. Они способны использовать фаголизосомы повторно, секретировать нелизосомальные белки. У них выше способность к пиноцитозу. Макрофаги быстрее реконструируют плазматическую мембрану, но характер их бактерицидного дей-


ствия во многом сходен с таковым у нейтрофилов: включает интернализацию микроорганизмов, слияние фагосом с лизосо-мами и активацию метаболитов кислорода при уничтожении микроорганизмов.

Между моноцитами и макрофагами обнаружено много разли­чий: прежде всего эти клетки отличаются по ферментативной ак­тивности и способности к фагоцитозу. При дифференцировке мо­ноцитов в макрофаги у них исчезают азурофильные гранулы, в ре­зультате более заметными становятся лизосомы, содержащие гид­ролитические ферменты. Поверхность макрофагов более склад­чатая и на ней больше рецепторов для Ig и комплемента.

Макрофаги (и, в меньшей степени, неактивированные моно­циты) продуцируют разнообразные соединения: компоненты комплемента, пропердин, факторы В и D. Гепатоциты произ­водят многие из этих белков в значительно больших количе­ствах, однако макрофаги обеспечивают локальный синтез бел­ков комплемента в экссудатах.

Макрофаги продуцируют растворимые белки — монокины. К ним относятся: интерлейкин-1 (IL-1), лейкоцитарный пиро-ген; фактор, активирующий фибробласты и пролиферацию глад-комышечных клеток, интерферон; факторы, стимулирующие про­лиферация клеток капилляров; факторы, влияющие на образо­вание колоний гранулоцитов, эритроцитов, макрофагов, мега-кариоцитов; фактор роста Т-клеток; фактор дифференцировки В-клеток; белки, убивающие опухолевые клетки; белок, супресси-рующий Т- и В-клетки.

Макрофаги продуцируют большое количество биологически активных веществ (БАВ): простагландины (PGE2), тромбоксан 2, лейкотриены В и С, причем в значительно больших количествах, чем нейтрофилы. Миелопероксидаза нейтрофилов и макрофагов эффективно уничтожает микроорганизмы, может играть сущест­венную роль в уничтожении агентов, вызывающих хронические гранулематозные инфекции.

Пероксидаза в нейтрофильных лейкоцитах была впер­вые обнаружена в 1941 г. К. Агнером. Поскольку по своим свой­ствам эта пероксидаза несколько отличалась от остальных живот­ных пероксидаз и найдена пока только в нейтрофилах, моноцитах и макрофагах, она впоследствии получила название «миелоперок­сидаза» (МПО). Методом гель-фильтрации определена молеку­лярная масса миелопероксидазы: у собаки — 149000 (К. Агнер, 1958). МПО — это важный компонент внугрилейкоцитарной мик-робоцидной системы нейтрофильных гранулоцитов. Это железо­содержащий белок, изоэлектрическая точка которого находится в области рН 10,0. Способность МПО окислять пероксидом во­дорода субстраты различной химической природы и продуциро­вать альдегиды, хлорамины, синглетный кислород, свободные ра­дикалы и другие высокоактивные антимикробные агенты является


 




биохимической основой иммунитета, главная роль в котором при­надлежит нейтрофильным лейкоцитам.

Еще в 1931 г. было доказано, что пероксидаза и пероксид во­дорода значительно усиливают антимикробную активность ряда фенолов посредством перевода их в соответствующие хиноны. В дальнейшем выяснили, что миелопероксидаза в присутствии пероксида водорода и окисляемого кофактора действует против различных микроорганизмов и их токсинов. Доказано, что миело­пероксидаза, пероксид водорода и окисляемый кофактор состав­ляют антимикробную систему в лейкоцитах. В системе миело­пероксидаза — пероксид водорода — галоген (кроме фтора) ионы галогенов взаимозаменяемы.

Система МПО — Н202 — йодид. Из всех галогенов йод счита­ется наиболее эффективным кофактором при осуществлении миелопероксидазной системной антимикробной функции. Для эквивалентного антибактериального эффекта требуется или одна часть йодида, или 15 частей бромида, или 200 частей хлорида. Ан­тимикробным действием обладает не только вся система МПО — Н202 — галоген в целом, но и некоторые ее компоненты. Агнер (1947) первым установил, что эта система йодинирует молекулы бактериальных ядов при их обеззараживании. Клебанов (1967) до­казал, что антимикробная система МПО — Н202 — йодид обус­ловлена йодинацией микроорганизмов. Была доказана зависи­мость фиксации йодида фагоцитами, поглощающими бактерии, от содержания в них миелопероксидазы. Моноциты способны фиксировать йодид, но нейтрофилы, где содержится наибольшее количество миелопероксидазы, наиболее эффективно фиксируют йодид. При высоких бактериальных нагрузках активность нейтро-филов выше, чем у моноцитов. Полная антибактериальная функ­ция системы МПО — Н202 — йодид соответствует антивирус­ной и антигрибной.

Система МПО — Н202 — хлорид. О переокислительном окис­лении хлорида впервые сообщил Агнер (1941). В настоящее время доказана активность системы МПО — Н202 — хлорид против бакте­рий, микоплаз и вирусов. Антимикробная активность этой системы осуществляется за счет переокислительного дезаминирования и де-карбоксилирования микроорганизмов. МПО катализирует образо­вание НОС1 из С1 и Н202. НОС1 реагирует с аминокислотами с об­разованием хлораминов. Хлорамины нестабильны и распадаются на NH3, C02, C1 и соответствующие альдегиды.

Существует определенная взаимосвязь и взаимодействие всех систем, выполняющих функции борьбы с чужеродными агентами. Так, продукты деградации /gG стимулируют увеличение уровня активности МПО. Агрегаты иммуноглобулинов, образующиеся при их окислительной деструкции, стимулируют дыхательный взрыв и секреторную дегрануляцию нейтрофилов с выделением МПО. Аг­регаты оказывают и прямое воздействие на нейтрофилы, а также


активируют систему комплемента. Последнее определяет образо­вание стимуляторов дегрануляции этих клеток.

На основании данных о способности МПО вызывать секрецию содержимого тромбоцитов высказывается предположение об учас­тии МПО в процессах межклеточной коммуникации. Следует от­метить, что пероксидаза слюны обладает способностью стимули­ровать митогенную активность лимфоцитов.

МПО играет роль в регуляции дыхательного взрыва. Один из продуктов миелопероксидазной реакции тормозит НАД-Н-ок-сидазу, ответственную за образование супероксидного радика­ла. Такой вывод сделан на основании сопоставления скорости генерации 02 и 02 на препаратах нейтрофилов человека, инку­бируемых в присутствии и в отсутствие антимиелоперокси-дазных антител.

МПО нейтрофилов может служить фактором усиления анти­микробного потенциала мононуклеарных фагоцитов клетки второй очереди при воспалительном процессе, а также и факто­ром потенцирования протеолиза деструктивных процессов в тканях. Так, она инактивирует ингибитор сериновых протеи-наз — а-1-антитрипсин и SH-протеиназ путем тиолдисульфид-ного обмена и в то же время обладает способностью активи­зировать латентные формы металлопротеиназ нейтрофилов — коллагеназы и желатиназы.

Набор протеолитических ферментов макрофагов похож на соответствующий набор нейтрофилов, но активность протеаз в них существенно выше. Одним из ферментов, характерных для макрофагов, является ангиотензинконвертаза, катализирующая превращение ангиотензина-I в ангиотензин-П, реакцию инакти­вации брадикинина.

На макрофагах имеются рецепторы фибрина и продуктов дегра­дации фибрина, способствующие более тесному взаимодействию клеток с продуктами свертывания. Макрофаги продуцируют замет­ное количество фибронектина, участвующего в клеточной адгезии, распластывании и движении клеток, а также содержат центры свя­зывания коллагена и клеток, обладающих значительной хемотакси-ческой активностью для фибробластов, что играет важную роль при восстановлении поврежденных тканей.



Просмотров 1281

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!