Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Межмолекулярное взаимодействие. Водородная связь. Между валентно-насыщенными и в сумме электронейтральными молекулами вещества в различных агрегатных состояниях действуют силы притяжения и отталкивания



Между валентно-насыщенными и в сумме электронейтральными молекулами вещества в различных агрегатных состояниях действуют силы притяжения и отталкивания, имеющие электростатическую природу. Относительная интенсивность этих сил во многом определяет физико-химические свойства вещества. Например, проявление сил отталкивания объясняет малую сжимаемость жидкостей и твердых тел. Силы притяжения лежат в основе таких явлений, как сжимаемость газов, адсорбция и т.д. Силы отталкивания есть результат взаимного отталкивания одноименно заряженных электронных оболочек. Силы отталкивания проявляются лишь на очень маленьких расстояниях и быстро убывают с увеличением расстояния. Eотт. =Ar-n , n=12 r - расстояние между молекулами. A и n - константы, характеризующие конкретное вещество. Часто силы межмолекулярного притяжения называют силами Ван-Дер-Ваальса, так как в газах и жидкостях мера взаимного притяжения определяется как a/V2 из уравнения Ван-Дер-Ваальса. Притяжение АА и ВВ – проявление когезии, АВ – адгезии. Различают

а) ориентационные силы

б) деформационные (индукционные)

в) дисперсионные силы.

a) ориентационные: они проявляются в случае, если молекула- ярко выраженный диполь. Такие молекулы стремятся расположиться упорядоченно: (+-) (-+) (+-) - уменьшение Eизб. В системе.

Еориент=

б)одна молекула полярна, другая – легко поляризуема. Под действием э.с. поля первой молекулы на 2 наводится диполь и они взаимодействуют. Еинд=

в) дисперсионное. Если молекулы не полярны, возникает так называемые мгновенные диполи. В случае многоатомных молекул в эл.оболочке в одних местах сгущение, а в других - разряжение электронов : на какой-то момент времени молекула - диполь. Дисперсионные силы суммируются. Это преобладающий вид взаимодействия. Eд= (3h*l1*l2 *I1*I2) / (2r^6* (I1+I2) [I1 ,I2- потенциалы ионизации.

Ориентационное взаимодействие преобладает, если молекулы - яркие диполи. В общем виде:

Eпритяж.=-B*r-m , m=6.

Eсум. = Eпритяж.+Eотталк. = A*r-n -B*r-6. Эти силы действуют на расстояниях 3-5 A (10^-8 см.)

E ~ 0.4*10^-4 кДж/Моль

 

Водородная связь наблюдается при взаимодействии водорода с сильно электроотрицательными элементами – O, F, N, реже Cl, S. Природа водородной связи до конца не изучена, так как она характеризуется как межмолекулярным, так и электростатическим взаимодействием.

В молекуле воды (сильной диполи) атомы водорода практически лишены электронных оболочек – они почти протоны, что дает им возможность притягиваться к кислороду из другой молекулы. Возникают ассоциаты (H2O)x, где х зависит от температуры.

В случае возникновения водородной связи водород ведет себя как двухвалентный элемент. LO…H=1.76 ангстрем, lO-H (ковал)=0,96 ангстрем. Энергия водородной связи 20-40 кДж/моль.

Водородная связь объясняет т.н. аномальные свойства воды – макс плотность при 4С (в этом случае (H2O)2, максимально плотно упаковываются), макс теплоемкость – т.к. энергия нагрева идет на разрыв водородных связей.

 

16. Система. Фаза. Компонент. Параметры. Функции состояния: внутренняя энергия и энтальпия. Стандартные условия.

Система - это тело или группа тел, находящихся в взаимодействии, которые мы мысленно выделяем из окружающей среды. Системы бываю гомогенными (смесь газов, раствор) и гетерогенные (вода со льдом, раствор с осадком) . В гомогенной системе между частями системы нет поверхностей раздела , а в гетерогенной - есть. Если система не обменивается с окружающей средой веществом и энергией, то она называется изолированной. Если отсутствует массообмен, а энергообмен присутствует, то это закрытая система, иначе - закрытая.

Фаза - совокупность всех гомогенных частей системы, одинаковых по составу и всем физ\хим свойствам, не зависящим от количества вещества. Фазы отделены друг от друга поверхностями раздела, на которых все свойства фазы резко скачком меняются.

Компоненты - составные части системы - химически индивидуальные вещества, составляющие данную систему и способные к самостоятельному существованию, будучи изолироваными от других частей системы. Состояние системы определяется набором переменных величин - параметров. Различают параметры интенсивные и экстенсивные. Интенсивные - не зависят от массы или числа частиц в-ва. (P,T), а экстенсивные - зависят (V, E).

Очень большую роль в т.д. играют т.н. функции состояния - это такие функции, значения которых зависят только от состояния системы и не зависят от пути по которому система пришла в данное состояние. Изменение функции состояния delta x = x2-x1, где x1 - значение параметра в начале процесса, а х2- в конце. Математическим признаком ф-и состояния является то, что ее дифференциал является полным дифференциалом , характерным же признаком полного дифференциала является равенство частных производных. S=fi(x,y); dS=M dx+ Ndy.

[deltaM/deltaY]x = [delta N/deltaX]y. Пусть дифференциал ф-и S=fi(x,y)=dS=2xy dx + x^2 dy. Частные производные: [delta(2xy)/delta(y)]x = 2x; [deltax^2/deltax]y=2x; 2x=2x. Наиболее важной т.д.ф-й состояния является внутренняя энергия системы, обозначаемая буквой U. При переходе системы из какого-либо состояния1 в состояние2 deltaU=U2-U1. U характеризует собой запас энергии данной изолированной системы. В понятие U входят следующие слагаемые: Eпоступательного и вращательного движения молекул, Еатомов, Еэлектронов, внутриядерная энергия (все виды энергии кроме кинетической энергии движения системы в целом и потенциальной энергии положения системы в целом). В настоящее время не представляется возможным экспериментально определить или рассчитать запас U систем, но можно рассчитать или определить изменение U. Очевидно, что в круговом процессе изменения функции состояния=0. Если система вышла из состояния1, претерпела изменения и вновь вернулась в состояние1, то изменение ф-и состояния=0. Дифференциалы dU и dH - полные дифференциалы. Другой ф-й состояния, широко используемой в термодинамике является энтальпия - Н (теплосодержание) Н = U+ pv . Если системе, находящейся в условиях постоянства объема сообщить некоторое кол-во тепла, то оно израсходуется исключительно на увеличение внутренней энергии системы. Если же процесс происходит в изобарно-изотермических условиях, то система при изменении объема, совершит работу против сил внешнего давления: deltaH=deltaU+P*deltaV.



Просмотров 978

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!