![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Реакции нуклеофильного присоединения
Реакции нуклеофильного присоединения к карбонильной группе начинаются с взаимодействия положительно заряженного карбонильного углерода со свободной электронной парой нуклеофильного реагента. На этом этапе реакция протекает медленно Вторая стадия – присоединение протона (или другого катиона) к образовавшемуся аниону протекает быстро: 1. По этому механизму к карбонильным соединениям присоединяются синильная кислота, гидросульфит натрия, магнийорганические соединения, водород: 2. Альдегиды, но не кетоны по данному механизму реагируют со спиртами, образуя полуацетали и ацетали, а также с аммиаком, альдимины и альдегидаммиаки:
Реакции замещения кислорода карбонильной группы Эти реакции также начинаются с нуклеофильного присоединения, но приводят к замещению атома кислорода в карбонильной группе. 1. Реакции с гидроксиламином, гидразином, фенилгидразином применяются для обнаружения, идентификации и количественного определения карбонильных соединений: Примечение: Гидразоны могу быть использованы для получения предельных углеводородов (реакция Кижнера): 2. При действии галогенидов фосфора или серы атом кислорода в молекуле карбонильного соединения замещается двумя атомами галогена: 3. Важной для ароматических альдегидов является реакция с аминами, приводящая к шиффовым основаниям (анилам) Реакции окисления 1. Альдегиды в отличие от кетонов легко окисляются кислородом воздуха, слабыми и сильными окислителями до кислот с тем же числом углеродных атомов. Реакцию альдегидов с аммиачным раствором гидроксида серебра называют реакцией серебряного зеркала. Ее используют для обнаружения альдегидов: 2. Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной раствор комплексной соли, образовавшейся из гидроксида меди и натрий-калиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты: Красная окись меди Cu2O почти количественно выпадает в осадок. С кетонами эта реакция не идет. 3. Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов. Разрыв углеродной цепи требует действий сильных окислителей и жестких условий реакции: 4. Для ароматических и алифатических альдегидов, не имеющих в молекуле водорода у α–углеродных атомов, характерна реакция Канницаро – окисление одной молекулы альдегида за счет другой при действии концентрированных щелочей: 5. Алифатические альдегиды под действием этилата алюминия подвергаются окислительно–восстановительному превращению с образованием сложных эфиров (реакция Тищенко). Реакции конденсации 1. Альдольная конденсация Альдегиды и метилкетоны в слабоосновной среде (ацетат калия, поташ) подвергаются альдольной конденсации. Альдольная конденсация идет только за счет группы, находящейся в α-положении к карбонилу, так как только водородные атомы этой группы в достаточной степени активизируются карбонильной группой:
В результате реакции конденсации образуются новые углерод-углеродные связи. Образовавшееся соединение содержит в молекуле как альдегидную, так и спиртовую группы (отсюда название альд-оль). 2. Кротоновая конденсация Альдоли – малоустойчивые соединения; они легко теряют элемент воды, образующиеся в результате отщепления гидроксильной группы и оставшегося у α-углеродного атома водорода: Ароматические альдегиды, содержащие альдегидную группу в ядре, не могут конденсироваться между собой из-за отсутствия водорода у α-углеродных атомов, но могут конденсироваться с другими веществами:
3. Реакция Перкина Ароматические альдегиды взаимодействуют с ангидридами кислот жирного ряда в слабощелочной среде: 4. Конденсация Кляйзена Ароматические альдегиды взаимодействуют с альдегидами и кетонами алифатических углеводородов:
5. Конденсация ароматических альдегидов с ароматическими соединениями с подвижными атомами водорода (фенолами, ароматическими аминами) имеет большое значение в синтезе красителей трифенилметанового ряда: 6. Специфической для ароматических альдегидов является бензоиновая конденсация, идущая под влиянием солей синильной кислоты (Н. Н. Зинин): Бензоин легко окисляется в дикетон бензил. 7. Очень своеобразно протекает реакция ароматических альдегидов с аммиаком. Из бензойного альдегида получается гидробензамид, превращающийся при нагревании в присутствии кислот в амарин:
![]() |