Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



ФИЗИОЛОГИЧЕСКАЯ РОЛЬ МАКРОЭЛЕМЕНТОВ



Организм животных не может нормально функционировать, если с водой и пищей не поступает необходимое количество мак­роэлементов. Минеральные вещества обеспечивают процессы рос­та, размножения, поддержания физиологического равновесия и


продуктивности животных, поскольку в определенных сочетаниях участвуют во всех жизненных проявлениях организма: дыхании, работе сердца и мышц, деятельности нервной системы и др.

Натрий и калий обеспечивают создание осмотического давления, транспорт веществ через клеточные мембраны, участву­ют в регуляции водно-солевого баланса организма, активности ряда ферментов и генерации биопотенциалов. Наряду с ткане­выми жидкостями значительное количество натрия и калия со­держится в пищеварительных соках и потовой жидкости. Нор­мальная жизнедеятельность организма возможна при соотноше­нии Na : К = 1 : 2. Любые отклонения от этого соотношения приводят к нарушению деятельности кишечника, сердца, мышеч­ной и нервной ткани.

Кальций принимает участие в процессах пищеварения и обезвреживания в организме вредных соединений (рис. 11.1), обес­печении процессов свертывания крови и формирования состава молока. Он необходим для нормальной деятельности сердца, функ­ционирования иммунной системы, защищающей организм от ин­фекций. В организме кальций усваивается одновременно с фос­фором (оптимальное соотношение 2 :1) и накапливается в основ­ном в костной ткани, обеспечивая ее механическую прочность. Для поддержания тонуса нервной системы, сосудодвигательных

Потребление 1000 мг/сут

Кость

Са пищеварительных соков

Пул кальция

200 мг

Общее всасывание Са 400мг

ЛПП мя

Моча 200 мг/сут

Кал 800 мг/сут

Рис. 11.1. Обмен кальция с участием желудочно-кишечного тракта, почек и костной ткани


реакций и регуляции проницаемости капилляров необходимо по­стоянное присутствие ионизированного кальция в кровотоке. При недостаточном поступлении кальция с кормом у коров понижает­ся оплодотворяемость, часты аборты; телята нежизнеспособны, с пониженной общей физиологической сопротивляемостью к не­благоприятным факторам среды. Особо чувствительны к каль­циевой недостаточности свиньи. Дефицит кальция приводит к на­рушению воспроизводства и полной стерильности, а у супоросных свиноматок снижается количество поросят в помете. Свиноматки могут приносить неполноценный приплод (мертворожденных и нежизнеспособных поросят) либо плохо выкармливать поросят или даже проявлять склонность к поеданию приплода. При недо­статке кальция в рационе молодняка различных видов животных (телят, поросят, ягнят, цыплят) возникает опасность заболевания рахитом, а при дефиците кальция у взрослых животных развивает­ся остеомаляция.

Кальций относится к наиболее важным химическим элемен­там, необходимым для обеспечения основных жизненных процес­сов в организме животных и определяющих продуктивность. Уста­новлено, что у высокопродуктивных коров потери кальция могут в несколько раз превышать потребность организма в этом элементе: при годовом удое 3000 кг с молоком за весь лактационный период выделяется около 22,5 кг кальция, а у коров-рекордисток в сутки теряется более 400 г. Особенно много кальция выводится из орга­низма птиц в репродуктивный период: в расчете на весь период яйценоскости (200 яиц в год) курица теряет более 400 г кальция, что в 13... 15 раз превышает его содержание в теле. В яйце со сред­ней массой 56 г содержится: Са — 1,98 г, Р — 0,12, Mg — 0,03, К и Na - по 0,07, С1 - 0,09, S - 0,11 г.

Фосфор — элемент, необходимый для жизнедеятельности организма: входит в состав опорных тканей, сложных белков и углеводов. Соединения, содержащие фосфор, входят в состав ряда ферментов, активируют ферментативные процессы, участвуют в окислительном фосфорилировании, промежуточном обмене угле­водов, сокращениях мускулатуры. Фосфор — активный катализа­тор и стимулятор обменных процессов в организме: участвует во всасывании, транспортировке и обмене органических питатель­ных веществ, а также в обеспечении пластических функций, деле­нии клеток и процессах роста тканей и органов.

Уровень содержания фосфора в организме животного зависит от количества его в рационе и степени усвояемости. Дефицит его вызывает ухудшение общего состояния, нарушение обмена веществ, извращение аппетита, развитие костных заболеваний (рахита, ос­теомаляции), снижение продуктивности и плодовитости. Фосфор находится в организме животных в виде неорганических (натри­евые, кальциевые, калиевые и магниевые соли фосфорной кис­лоты) и органоминеральных соединений (фосфорные эфиры ами-


нокислот, фосфатиды, нуклеиновые кислоты, нуклеопротеиды и соединения с непосредственной связью между азотом и фосфо­ром — креатинфосфорная кислота). Для переваривания и усвое­ния животными питательных веществ необходимо участие фосфо­ра в фосфорилировании продуктов обмена. Кроме того, у жвачных животных для осуществления микробиального синтеза в предже-лудках необходим фосфор для преобразования и использования азотистых веществ корма, что особенно важно при скармливании синтетических азотсодержащих препаратов. В присутствии солей фосфорной кислоты заметно ускоряется всасывание аминокис­лот из кишечника. Применение минеральных добавок, содержа­щих фосфаты, повышает использование азота на 5...23 %.

Обмен неорганического фосфора тесно связан с метаболичес­кими реакциями организма. Особенно интенсивно протекают ре­акции между неорганическим фосфором и макроэргами, в первую очередь аденозинтри- и аденозиндифосфорными кислотами (АТФ и АДФ). Увеличение массы тела животного и другие виды продук­тивности зависят от синтеза белка, который возможен лишь при определенных затратах энергии: чем интенсивнее метаболичес­кие процессы, тем быстрее протекают реакции фосфорилирова-ния, восстанавливающие израсходованную АТФ.

Основная часть фосфора (83...87 %) в организме животных со­держится в костной ткани, состоящей из фосфорно-кальциевых солей. Степень минерализации костей и включение фосфора в об­мен костной ткани зависят от многих факторов: общего уровня питания, типа кормления, содержания в рационах белка, фосфо­ра, кальция и витаминной обеспеченности корма. Поступивший в желудочно-кишечный тракт с кормами и минеральными добавка­ми фосфор всасывается в основном в виде неорганических солей. Под действием пищеварительных соков и ферментов нераствори­мые соединения расщепляются с образованием аниона фосфора. В жидкостях тела (крови, лимфе или ликворе) фосфор содержится в виде одно- и двухосновных фосфатов щелочных и щелочнозе­мельных металлов. Большая часть поступившего в организм фос­фора вначале накапливается в печени, а затем переходит в плазму крови, в мышцы, мозг, костную и другие ткани, где и включается в промежуточный обмен (рис. 11.2).

Обмен фосфора тесно связан с обменом кальция, причем при разработке рационов, сбалансированных по минеральным веще­ствам, следует исходить не столько из соотношения этих эле­ментов в кормах, сколько из потребности в них организма и функ­ционального состояния животных. Так, у телят повышение содер­жания фосфора в кормах за счет фосфорнокислого натрия предот­вращает развитие рахита, несмотря на то, что кальций поступал в небольших количествах. Жвачные животные эволюционно при­способлены к потреблению больших количеств корма (травы, со­ломы, сена, силоса и сенажа), в котором соотношение кальция и


 





Потребление 1200 мг/сут

 

 

 

 

 

 

 

 

 

 

  Кость
       
  Фосфор пищеварительных соков 100 мг   '
  _ Пул фосфатов
 
  Общее всасывание фосфора 900 мг
   
  →        
           

Кал 400 мг/сут


Моча 800 мг/сут

Рис. 11.2. Метаболизм фосфатов с участием желу­дочно-кишечного тракта, костной ткани и почек

фосфора выше рекомендуемого и составляет 2:1. При скармлива­нии отдельных видов корма (клевер, люцерна) существенный по­ложительный эффект достигается при соотношении кальция и фосфора 8:1. Только при повышенном содержании кальция в кормах и соотношении кальция и фосфора 10:1 отмечается отри­цательное влияние несбалансированного рациона.

Обмен кальция и фосфора тесно связан с магнием. Между кальцием и магнием существует определенный антагонизм, хотя они присутствуют во всех органах и тканях. При нарушении обме­на магния изменяется обмен кальция: при дефиците магния воз­никает гиперкальциемия и усиливается выведение кальция с мо­чой. Одновременно происходит истощение запасов калия в орга­нах и тканях, что в конечном итоге приводит к развитию «травя­ной тетании», этиологию которой связывают с дефицитом магния или нарушением соотношения элементов. Избыток магния в ра­ционе вызывает повышенное выделение из организма как фосфо­ра, так и кальция. Кроме того, переизбыток магния значительно снижает всасывание фосфора. Между обменом кальция, фосфора и витаминов А и D существует тесная связь. Витамин D значи­тельно повышает усвоение фосфора из желудочно-кишечного тракта и его сохранение в организме, а также реабсорбцию в по-


чечных канальцах, активизирует процессы отложения и включе­ния фосфора в костную ткань. Эти процессы существенно нару­шаются при D-авитаминозе. Аналогичным действием обладает и витамин А, нормализуя уровень неорганического фосфата и каль­ция в крови.

Магний. В организме магний занимает четвертое место среди катионов и второе после калия среди внутриклеточных катионов. Он играет важную роль, являясь кофактором различных ферментов, большая часть которых утилизирует АТФ. Магний увеличивает порог стимуляции нервных волокон и способен в некоторой степени ингибировать процесс освобождения ацетил-холина в нервно-мышечных синапсах. При недостатке магния у животных повышается общая возбудимость. Магний снижает периферическое сопротивление кровеносных сосудов и давление крови, усиливает действие трипсина, активирует работу кишечни­ка, поджелудочной железы и процессы белкового синтеза. Магний включается в пропердиновую систему, обеспечивая естественную резистентность организма к различным заболеваниям.

Лишь небольшая часть магния (около 1 %) находится во вне­клеточной жидкости, а 60 % его сосредоточено в кости в структу­ре кристаллов апатита. Приблизительно 20 % общего магния орга­низма содержится в мышцах: он способствует взаимодействию ак­тина с миозином за счет формирования активного магний-белко­вого комплекса, обеспечивающего процесс сокращения мышц. Остальные 20 % присутствуют в других тканях: наибольшее содер­жание обнаружено в печени. Концентрация магния в крови под­держивается в узких пределах — от 1,5 до 1,9 мэкв/л. В почках при образовании первичной мочи содержащийся в плазме крови маг­ний подвергается ультрафильтрации, причем 95 % его реабсорби-руется, а 5 % экскретируется с мочой. Реабсорбция магния начи­нается в проксимальных канальцах. В нисходящем колене петли Генле концентрация магния возрастает в несколько раз по отно­шению к ультрафильтрату за счет удаления значительных коли­честв реабсорбируемой воды. Толстое восходящее колено петли Генле играет основную роль — здесь реабсорбируется до 60 % про­фильтровавшегося магния.

Сера входит в состав аминокислот (метионин, цистин, цис-теин), структурных и функциональных белков (кератин, муцин, мукоиды), а также физиологически активных веществ (глютадион, инсулин, окситоцин и др.), витаминов тиамина (В[) и биотина. Особую роль она играет в формировании шерстного покрова и ороговении кожи за счет высокого содержания серосодержащего белка кератина. Метионин служит источником метальных групп при синтезе физиологически активных веществ — холина, ацетил-холина и адреналина. Цистеин служит предшественником кофер-мента А, участвующего в обмене белков, жиров и углеводов. Му-котинсульфаты ингибируют протеолитические ферменты и пре-


 




дотвращают переваривание стенок желудочно-кишечного тракта. Гепарин — смесь сульфатированных полисахаридов, является мощ­ным антикоагулянтом. Таурин — раминосульфоновая кислота, про­изводное метионина и цистеина, необходимый компонент корма для животных, особенно кошек, которые не способны использо­вать для этой цели аминокислоту глицин. Соединения серы в организме участвуют в детоксикации, связывая ядовитые веще­ства — фенолы, индоксилы и другие продукты обмена.

Сера поступает в организм в основном с кормом, в составе бел­ков и серосодержащих аминокислот. Регуляцию обмена серы обес­печивают эндокринные факторы: соматотропный гормон гипофи­за стимулирует включение аминокислот в белки и регулирует уро­вень глютатиона в крови, а также стимулирует рост шерсти. Дей­ствие тиреоидных гормонов тесно связано с обменом серосодер­жащих аминокислот за счет активации процессов транссульфиро­вания. Из организма сера выделяется с мочой в виде солей серной кислоты и частично с калом и жиропотом ( у овец).

Хлор — важнейший анион в составе жидкостей организма. Постоянно присутствует в виде соединений с натрием и мар­ганцем и участвует в разнообразных физиологических и биохи­мических реакциях. Хлор в составе хлористо-водородной (соля­ной) кислоты обеспечивает кислую реакцию желудочного сока. Ионы хлора обладают осмотической активностью и содейству­ют поддержанию осмотического давления в жидкостях организ­ма. Анионы хлора — непременные участники процессов воз­буждения в ЦНС.

Железо — широко распространенный в живой природе элемент. Достаточно высокое содержание в организме животных дает основание отнести его к разряду макроэлементов. Однако если исключить железо, находящееся в геминовой форме, то его концентрация в тканях окажется меньше, чем такого типичного микроэлемента, как цинк. Геминовое железо входит в состав ге­моглобина, миоглобина и гемосодержащих ферментов — цитохро-мов, цитохромоксидазы, каталазы и пероксидазы. Негеминовое железо составляют трансферрин, ферритин, гемосидерин и неко­торые протеинаты железа (феррофлавопротеиды).

Железосодержащим молекулам присущи следующие основ­ные функции: транспорт электронов (цитохромы, железосеро-протеиды); транспорт и депонирование кислорода (гемоглобин, миоглобин, эритрокруорин, гемэретрин); формирование актив­ных центров окислительно-восстановительных ферментов (окси-дазы, гидроксилазы и др.); транспорт и депонирование железа (трансферрин, гемосидерин, ферритин, сидерхромы). Железо по­ступает в организм животного с кормом. При составлении раци­онов следует учитывать, что излишний кальций конкурирует с железом за всасывание, уменьшение кислотности желудочного сока снижает усвояемость железа, для полноценного усвоения


железа необходимо адекватное содержание витаминов группы В (рибофлавина и пиридоксина). Дефицит витамина А нарушает процесс всасывания, белки животного происхождения усилива­ют усвоение железа, а белки сои уменьшают. После всасывания железо накапливается в печени, селезенке и слизистой оболочке кишечника в виде ферритина.

Основной признак дефицита железа — нарушение образова­ния эритроцитов и, как следствие, микроцитарная гипохромная анемия. Недостаточность железа может проявляться в повышен­ной хрупкости костей, ломкости когтей, нарушении работы серд­ца и др. Минеральная подкормка в виде сернокислого железа крайне необходима для полноценного развития поросят-сосунов, реже телят до 2...3 мес, поскольку в этот период часто возникает анемия как следствие железодефицитных состояний, возникаю­щих при кормлении молоком.



Просмотров 595

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!