Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Ректальная температура у различных видов животных



 

Вид животного Температура, °С Вид животного Температура, °С

Лошадь 37,5...38,5 Свинья 38,0...40,0

Корова 37,5...39,0 Курица 40,5...42,0

Буйвол 37,0...38,5 Индейка 40,0...41,5

Олень 38Д..38.5 Утка 41,0...43,0

Верблюд 37,5...38,5 Гусь 40,0—41,0

Овца 38,5...40,0 Кролик 38,5...39,5

Коза 38,5...40,0 Собака 37,5...39,5


Температура тела у млекопитающих и птиц подвержена регу­лярным суточным колебаниям в пределах 1...2 "С. У дневных жи­вотных температурный максимум регистрируется днем, мини­мум _ ночью, а у ночных животных — наоборот. Этот суточный ритм, не обусловленный сменой периодов активности и покоя, сохраняется у животного даже в состоянии полного покоя. Суточ­ные колебания соответствуют периодам света и темноты, однако если круглосуточно содержать животных в условиях постоянной и равномерной освещенности, закономерность сохраняется, т. е. этот механизм имеет эндогенную природу.

В организме животного при сбалансированном теплообмене температура на поверхности тела всегда ниже внутренней. Арте­риальная кровь, притекающая к поверхности тела, теряет часть тепла, и оттекающая венозная кровь холоднее артериальной, т. е. таким образом осуществляется перенос теплоты к поверхнос­ти и охлаждение внутренних органов. Особое значение это имеет для жвачных животных, у которых при функционировании мик­рофлоры рубца выделяется много теплоты (температура в рубце днем 38...39 "С, а ночью 39...41 °С). В организме животных имеется более теплое «ядро», представленное внутренними органами и мозгом, и периферия — кожа, мышцы, температура которых ко­леблется в широких пределах в зависимости от температуры окру­жающей среды.

Для теплопродукции теплокровные животные широко исполь­зуют терморегуляционную активность мышц. Сократительный термогенез проявляется в условиях пониженной внешней темпе­ратуры: специфический терморегуляционный тонус мышц разви­вается и протекает на уровне отдельных двигательных единиц. Двигательные единицы мышц работают асинхронно в режиме низкочастотного зубчатого тетануса с частотой от 4 до 16 сокраще­ний в 1 с, что создает видимость тонического напряжения мышц. Тоническое напряжение испытывают мышцы шеи, туловища и сгибателей конечностей: животное сворачивается в клубок, что уменьшает поверхность теплоотдачи. При дальнейшем охлажде­нии для выработки дополнительной теплоты включается меха­низм «холодовой дрожи», развивается залповая активность высо­копороговых двигательных единиц; эти сокращения крайне не­экономичны.

Наряду с сокращением скелетных мышц в качестве источника теплоты выступает бурая жировая ткань — это особая форма орга­низации жировой ткани, в которой происходит окисление жир­ных кислот без синтеза и распада АТФ, что дает возможность по­лучения значительных количеств теплоты. Эта форма несокра­тительного теплогенеза наиболее характерна для зимнеспящих животных, у которых температура тела поддерживается хоть и на низком, но постоянном уровне (1...2 "С выше температуры окру­жающей среды).


Теплоотдача — процесс выделения теплоты из организ­ма. Осуществляется благодаря следующим механизмам: тепло­излучение — рассеивание теплоты в воздух и конвекция за счет нагревания слоя воздуха, окружающего тело животного; тепло-проведение — передача теплоты от тела животного к окружающим предметам (стены, пол); выделение теплоты из организма при ис­парении пота и слюны, а также с выдыхаемым воздухом, мочой, калом и молоком.

Теплоотдача как показатель передачи тепла от внутренних час­тей тела к поверхности кожи и от кожи в окружающую среду мо­жет существенно меняться в зависимости от наличия на коже во­лосяного покрова. У животных, обитающих в холодном климате, мех препятствует утечке теплоты. Хорошо известно, что густота меха у животного зависит от времени года: зимний мех гуще в 2,5 раза, лучше сохраняет теплоту. Подкожный жир выступает в качестве эффективного теплоизолятора даже в экстремальных арктических условиях.

Быстрое снижение температуры тела происходит при испаре­нии слюны и пота: количество теплоты, теряемое при испарении 1 кг воды, составляет примерно 580 ккал, или 2426 кДж. Кожа име­ет особое значение в терморегуляции, так как около 60 % общей потери теплоты происходит именно через нее. При отсутствии во­лосяного покрова пот испаряется очень быстро, что эффективно снижает температуру оттекающей от кожи крови. У большинства животных, покрытых шерстью, снижение температуры тела обес­печивается потоотделением. У верблюда, покрытого густой шер­стью, также функционируют потовые железы: в условиях сухого воздуха пустыни пот испаряется мгновенно, что послужило осно­ванием для версии, будто они не потеют. Следует учитывать, что процессы испарения пота, а значит и теплоотдачи существенно зависят от условий окружающей среды, влажности, температуры, скорости воздушного потока.

У крупных копытных животных и собак теплоотдача усилива­ется за счет частого и поверхностного дыхания (тепловая одышка). Очевидная разница между учащенным дыханием и потоотделени­ем как средствами испарения влаги состоит в том, что создается ток воздуха над влажной поверхностью, но при этом не происхо­дит потери минеральных веществ, входящих в состав потовой жидкости. При обильном потоотделении может возникнуть состо­яние дефицита солей в организме. Усиленная вентиляция легких при учащенном дыхании может повысить выведение С02 и вы­звать сильный алкалоз. В свою очередь, увеличение вентиляции требует дополнительной мышечной работы и связано с дополни­тельной теплопродукцией. У собаки в жаркий день дыхание уча­щенное: число дыхательных движений возрастает с 30...40 до 300...400 в минуту; периоды учащения — короткие и перемежают­ся с периодами обычного дыхания. Птицы, в отличие от млекопи-


тающих, не имеют потовых желез, и усиленное испарение влаги у них происходит либо за счет учащения дыхания, либо с поверхнос­ти слизистой оболочки дна ротовой полости и верхней части глотки посредством быстрых колебаний (гулярное трепетание).

Регуляция температуры тела, т.е. поддержание баланса между уровнем теплопродукции и теплоотдачи, осуществляется рефлек-торно. Ведущая роль принадлежит центру терморегуляции, кото­рый является частью системы центров гипоталамуса, интегрирую­щей вегетативные, эмоциональные и моторные компоненты адап­тивного поведения. Центр терморегуляции в гипоталамусе, вос­принимая сигналы от терморецепторов кожи, внутренних органов и термочувствительных нейронов гипоталамуса, локализованных в медиальной преоптической зоне, обеспечивает коррекцию тем­пературы тела. Терморегуляционные рефлексы развиваются при поступлении соответствующих сигналов от периферических тер­морецепторов. Афферентная импульсация от них проходит через дорсальные корешки и задние рога спинного мозга и переклю­чается на систему сегментарных и вегетативных нейронов, кото­рые обеспечивают прохождение импульсов по восходящим путям спинного мозга. Пройдя по спиноталамическому и спиноретику-лярному пучкам, информация от периферических терморецепто­ров, поступив в нейроны гипоталамуса, используется для обеспе­чения температурного гомеостаза. Нейроны медиальной преопти­ческой зоны получают информацию о температуре мозга. Причем на основании результатов множественной термометрии мозга, крупных сосудов и слизистой носовых ходов можно говорить об охлаждении мозга за счет функционирования теплообменников, располагающихся в глазничных и крыловидных венозных сплете­ниях. Температура в медиальной преоптической зоне гипоталаму­са во все сезоны года ниже ректальной на 0,5... 1,5 "С, что особен­но важно в жаркое время года, когда частое дыхание спасает ткани мозга от перегревания.

Раздражение периферических холодовых рецепторов приводит к увеличению теплопродукции, в основном за счет интенсифика­ции обмена веществ, холодовой дрожи и уменьшению теплоотда­чи. При снижении температуры тела ниже комфортной активиру­ется симпатический отдел вегетативной нервной системы и, как следствие этого влияния, усиливается энергообмен и снижается отдача тепла. Мышцы сокращаются в наиболее эффективном для них режиме, повышается тонус периферических кровеносных со­судов и развивается пиломоторный рефлекс. Пилоэрекция, воз­никшая в результате этого рефлекса, — поднятие волос или перьев делает животного и птицу пушистыми, что способствует повыше­нию теплоизоляции за счет сохранения большого количества на­гретого воздуха. Гипотермия, развивающаяся при снижении рек­тальной температуры на 2 "С, приводит к потере сознания: у чело­века при снижении температуры тела до 24...26°С наступает


 




смерть за счет нарушения автоматии сердца, животные же бо­лее устойчивы к гипотермии: для собак летальная температура 18...20°С, кошек- 14...16, крыс - 13...15°С.

При превышении комфортного уровня температуры окружаю­щего воздуха и возникающей опасности перегрева тела и, особен­но, мозга реагируют термические рецепторы (термосенсоры) ме­диальной преоптической области гипоталамуса, активируются особые отделы симпатической нервной системы, обеспечивающие реакцию располагающихся в коже холинергических нервных во­локон. Выделение ацетилхолина приводит к расширению перифе­рических кровеносных сосудов и увеличению теплоотдачи за счет повышения температуры поверхности тела и усиления теплоизлу­чения. При действии ацетилхолина возрастает потоотделение, что приводит к существенному снижению температуры тела за счет испарения. Развивается тепловая одышка — дыхание становится частым и поверхностным, что приводит к интенсивному испаре­нию влаги в верхних дыхательных путях. Одновременно снижает­ся тонус скелетной мускулатуры и, следовательно, уменьшается теплопродукция.

В процессе длительной адаптации к жизни в жарком климате у животных уменьшается потребность в воде, необходимой для снижения температуры тела, из-за способности ограничить по­ступление теплоты извне. Существенно и то, что у животных — обитателей пустыни (например, у верблюда) толстый слой шерсти обладает высокими теплоизоляционными свойствами. Если остричь верблюда, то нарушение теплового баланса незамедлительно при­ведет к увеличению расхода воды примерно на 50 %. При ис­черпании адаптационных механизмов наступающая гипертермия оказывается более опасной для организма: летальный исход воз­можен при повышении температуры тела всего на 6 °С.

Наряду с рефлекторным механизмом в процессах терморегуля­ции в симпатическом отделе вегетативной нервной системы в реализации гипоталамической терморегуляции участвуют железы внутренней секреции, главным образом щитовидная железа и над­почечники. Уровень тиреоидных гормонов определяет интенсив­ность окислительных процессов и тесно связан с сезонными коле­баниями температуры. Особенно ярко проявляется этот феномен у животных, впадающих в спячку: в этот период уровень гормонов щитовидной железы и интенсивность основного обмена сущест­венно снижаются. В условиях летнего периода в крови у животных устанавливается более высокая, чем в зимний сезон, концентра­ция кальция и сахара, нарастает осмолярность плазмы крови в ре­зультате деятельности гуморальных механизмов, осуществляемых корой надпочечника. Терморегуляция контролируется корой боль­ших полушарий, что позволяет оценить общую температурную си­туацию и определить поведенческую реакцию, направленную ли­бо на избежание экстремальных температур, либо на активные


действия, связанные с постройкой убежища (нора, логово, гнездо), или на изменение температуры тела. Важно отметить, что если процессы теплопродукции у большинства животных достаточно стабильны и определяются видовыми, породными и индивидуаль­ными особенностями обмена веществ, то адаптация организма к быстроменяющимся условиям окружающей среды происходит в основном за счет изменения процессов теплоотдачи.

БЕЛКОВЫЙ (АЗОТИСТЫЙ) ОБМЕН

Белками (протеинами) называют высокомолекулярные со­единения, построенные из аминокислот, которые обеспечивают структурную организацию и жизнедеятельность организма. Они составляют основу всех тканевых элементов организма, их био­синтез определяет рост и развитие. Постоянное обновление бел­ков — необходимое условие для обеспечения структуры и функ­ции организма на протяжении жизни. Белки обладают и значи­тельной энергетической ценностью (1 г белка дает в метаболичес­ких реакциях 17,22 кДж).

Одна из наиболее важных функций веществ белковой приро­ды — это их участие в реакциях обмена веществ в качестве мощных катализаторов химических реакций — ферментов. Белки обеспечи­вают сократительные процессы (актин, миозин), транспорт газов кровью (гемоглобин), свертывание крови (фибриноген), защиту организма от вирусов, микробов, чужеродного белка (иммуногло­булины), взаимосвязь между органами и тканями (гормоны). Таким образом, белки выполняют пластическую (структурную) и функци­ональную роль. Белки постоянно обновляются, так как в организме непрерывно происходит распад белка и синтез новых белковых структур. Единственным источником для синтеза новых белков организма являются белки пищи. При распаде белков корма осво­бождаются аминокислоты, которые могут всасываться и использо­ваться как структурный элемент для синтеза нового тканевого бел­ка, для образования производных аминокислот (пуриновых и фос-фатидных оснований). Некоторые аминокислоты, подвергаясь дезаминированию, участвуют в углеводном обмене.

Биологическая ценность различных белков неодинакова и за­висит от их аминокислотного состава. Полноценные белки содер­жат все незаменимые аминокислоты, т. е. аминокислоты, которые не образуются в организме, но необходимы для его полноцен­ного развития и функционирования: валин, изолейцин, лейцин, треонин, лизин, триптофан, фенилаланин. Частично заменимыми являются аргинин, гистидин, цистеин и тирозин. Незаменимость аминокислот определяется участием их не только в синтезе специ­фических белков, но и самостоятельно в регуляторных и обмен­ных процессах. Так, для синтеза физиологически активных ве-


 




ществ — адреналина и норадреналина — для процессов метилиро­вания необходим метионин, который может использоваться и при образовании холина и креатина. Фенилаланин и тирозин необхо­димы для образования катехоламинов и тиреоидных гормонов. Триптофан служит источником для синтеза витамина РР и серо-тонина. Аргинин используется в процессе образования мочеви­ны — этапа белкового обмена, необходимого для освобождения организма от конечных продуктов.

Потребность в поступлении незаменимых аминокислот с кор­мом у жвачных животных значительно меньше, так как микро­флора рубца способна синтезировать их в достаточных количе­ствах. У простейших содержание незаменимых кислот в расчете на сухое вещество колеблется от 33 до 44 %, а у бактерий — от 24 до 27 %. Это указывает на то, что аминокислотный состав и перева­римость бактериального и протозойного протеина достаточно не­зависимы от рациона: микробиальный протеин является источни­ком азота постоянного состава. Вместе с этим для жвачных и моногастричных животных актуальной остается проблема полно­ценного питания, обеспечивающего необходимый аминокислот­ный состав и полноценное развитие роста и продуктивности. Для роста шерсти овцам требуется больше серосодержащих аминокис­лот, а для образования казеина — лизина. С момента начала лакта­ции в плазме крови уменьшается концентрация лизина, треонина, гистидина, лейцина, аргинина и глутаминовой кислоты. При до­полнении рациона некоторыми аминокислотами происходит луч­шее усвоение азота корма.

Нормальное протекание процессов белкового обмена, полно­ценное осуществление физиологических функций невозможны без достаточного белкового питания. Поскольку отличительной особенностью химического состава белков является наличие в нем азота, то количественное соотношение различных сторон белкового обмена можно оценить по азотистому балансу. Для этого определяется соотношение азота, поступившего в организм за сутки с пищей, и азота, выделенного из организма в результате распада белков. Поскольку выделение азота происходит главным образом с мочой, то формула азотистого баланса выглядит следу­ющим образом:

Азот пищи — Азот кала

К.

Азот мочи

Исходя из того, что в белке в среднем содержится 16 % азота, легко рассчитать поступление белка в организм: 1 г азота соответ­ствует 6,25 г белка. В организме взрослого здорового животного при оптимальных условиях кормления и содержания должно под­держиваться азотистое равновесие, однако для обеспечения того или иного вида продуктивности при усиленном росте, беременно-


сти или лактации часть азота корма должна задерживаться в организме, т. е. азотистый баланс должен быть положительным. Если из организма выделяется больше азота, чем поступает, а это может быть связано с нарушением поступления полноценного белка или в период заболевания, азотистый баланс может быть отрицательным.

Распад белков в организме при отсутствии их поступления с кормом приводит к потере тканевого белка, обусловленной про­цессами жизнедеятельности. М. Рубнер ввел понятие «коэффи­циент изнашивания» — это потеря белка, пересчитанная на 1кг массы тела в условиях покоя (0,028...0,065 г азота на 1 кг массы в сутки). Для покрытия этого белкового дефицита организм дол­жен получать извне избыточное количество белка, что позволит «выбрать» нужные аминокислоты из более значительной массы белкового питания.

Вместе с этим белки пищи обладают специфически динами­ческим действием и способностью повышать интенсивность об­мена веществ. После поступления белков с пищей интенсив­ность обмена повышается и составляет 40...50 % калорийности введенного белка. Таким образом, для поддержания азотистого равновесия с пищей должно поступать больше белка, так как это количество должно компенсировать сложившийся дефицит и по­крыть затраты на динамическое воздействие принятой пищи. При белковом голодании снижается интенсивность синтеза и распада белка, что влечет за собой нарушение синтеза функцио­нально необходимых белков, нарушает функцию многих органов и систем, прекращает рост организма и формирование скелета. Белковое голодание приводит к усиленному распаду белков ске­летной мускулатуры, печени и других органов. Освобождающие­ся аминокислоты в ходе перераспределения аминокислотных запасов используются для синтеза белков ЦНС, сердечной мыш­цы, гормонов. Организм приспосабливается к новым экстре­мальным условиям существования. В дальнейшем существенно снижается активность ферментов, развивается дегенерация эн­докринных желез и нарушается работа печени и почек. Таким образом, для обеспечения жизнедеятельности и поддержания азотистого равновесия в организм животных должно поступать определенное количество белка — это минимальное количество белка, необходимое для поддержания основного обмена, называ­емое белковым минимумом. Белковый минимум (в граммах на 1кг живой массы ) составляет для овцы и свиньи 1, для лошади в по­кое — 0,7...0,8, а при работе — 1,2...1,42; для нелактирующей ко­ровы—0,6...0,7, а для лактирующей — 1. Из этого следует, что поступающее при белковом минимуме количество способно не только компенсировать метаболическое изнашивание белков, но и оплатить энегетические затраты, связанные со специфически динамическим действием принятой пищи.


 



28 — 3389



11.2.1. ОСНОВНЫЕ ЭТАПЫ БЕЛКОВОГО ОБМЕНА

Первый этап. Пищеварительные процессы обеспечива­ются функционированием ферментативных систем, участвующих в расщеплении белков до аминокислот и последующем их всасы­вании в кровь. Ферментативные процессы расщепления белка осуществляются протеиназами — гидролитическими ферментами, разрушающими пептидные связи, в результате чего из белков об­разуются крупные полипептиды (пептоны и альбумозы). В даль­нейшем при участии карбопептидаз, аминопептидаз, дипептидаз белковая молекула разрушается до стадии аминокислот. Амино­кислоты транспортируются через эпителиальную клетку кишеч­ника и поступают с кровотоком через воротную вену в печень, где часть их задерживается и трансформируется, а часть переносится к различным органам и тканям. Заметим, что всасывание амино­кислот в кишечнике — энергозависимый процесс, требующий расходования АТФ.

У жвачных в рубце большая часть белков и других азотистых соединений пищи до поступления в последующие отделы пищева­рительного тракта подвергается специфическим превращениям. Рубцовые микроорганизмы, обладая в числе прочих и протеолити-ческой активностью, расщепляют белки корма до пептидов и ами­нокислот и служат источником образования аммиака в процессе дезаминирования. Образующийся аммиак используется в основном для синтеза микробиальных белков, но некоторое его количество поступает через стенку рубца в кровь. Высвобождение аммиака под действием микробиальных дезаминаз происходит достаточно быст­ро, причем различные кормовые источники азота существенно раз­личаются по скорости образования аммиака в зависимости от под­готовки корма: силосованные корма, где процесс ферментативного расщепления составляющих корма в основном уже прошел, обеспе­чивают значительно более высокий выход аммиака.

Особенно важным источником аммиака является мочевина эн­догенного и экзогенного происхождения, которая расщепляется микробиальными уреазами до аммиака и диоксида углерода. Высво­бождение аммиака происходит и из других небелковых соедине­ний азота. Кроме того, до аммиака могут восстанавливаться ни­траты простейшими микроорганизмами рубца на стадии проме­жуточного обмена азота. Благодаря этому можно использовать мочевину и аммонийсодержащие соединения в качестве пищевых добавок в рационах жвачных животных для восполнения белка и оптимизации азотистого баланса. Известно, что мочевина посто­янно присутствует в кровотоке жвачных животных, но при быст­ром ее поступлении в кровь и достижении опасных концентраций она выводится почками, а при небольших концентрациях экскре-тируется слюнными железами и со слюной поступает в рубец, где вновь подвергается микробному метаболизму. Другая группа азот-


содержащих веществ в рубцовом содержимом представлена нук­леиновыми кислотами, которые быстро расщепляются фермен­тами микроорганизмов до мономеров и используются микроорга­низмами рубца для белоксинтетической деятельности.

Источники азота, быстро образующие аммиак, способствуют перевариванию целлюлозы и крахмала, поскольку он необходим для питания и размножения целлюлозолитических и амилолити-ческих бактерий. Для синтеза аминокислот из аммиака необходи­мы углеродный скелет и энергия, при этом микроорганизмы спо­собны использовать различные источники углерода (углеводы, изо-валериановую кислоту, ацетат и другие летучие жирные кислоты). Синтез определенных аминокислот требует специфичных угле­родных скелетов: изовалериат для лейцина, 2-метилбутират для изолейцина, изобутират для валина, фенилацетат для фенилала-нина, индол-3-ацетат для триптофана. Наряду с синтезом амино­кислот в рубце происходит всасывание аммиака при его концен­трации 7 мг%. Аммиак с кровотоком поступает в печень, где он ис­пользуется для синтеза мочевины. Аммиак в ионной форме — ион аммония не способен адсорбироваться клеточной мембраной, и только при повышении рН ионы аммония, превращаясь в аммиак, быстро всасываются за счет легкого проникновения через клеточ­ную мембрану. Некоторое количество аммиака может трансформи­роваться в мочевину и в слизистой оболочке рубца.

Второй этап. Промежуточный обмен белков начинается в печени, куда поступают всосавшиеся в желудочно-кишечном тракте аминокислоты. Здесь происходит их трансформация — дезаминиро-вание, переаминирование (или трансаминирование), декарбоксили-рование при участии специфических ферментов и образование но­вых аминокислот с отщеплением амино- и кетогруппы. Безазотис­тые остатки аминокислот используются в синтезе жиров, углеводов и других метаболически значимых соединений. В процессе промежу­точного обмена аминокислот образуются и физиологически актив­ные соединения: при декарбоксилировании — амины (катехолами-ны, гистамин, серотонин) и гамма- аминомасляная кислота.

Начальным звеном биосинтеза белков является транспорт их из крови в клетки, где свободные аминокислоты образуют комп­лексные соединения с АТФ и тРНК и доставляются к рибосомам. Структурные компоненты клетки рибосомы (или их объедине­ние полисомы) «сшивают» аминокислоты в определенной после­довательности и формируют первичную полипептидную цепь. Дальнейшие внутриклеточные превращения полипептидной цепи (приобретение вторичной и третичной структуры за счет включе­ния в состав молекулы фосфатных и кальциевых сшивок) опреде­ляют конечный результат белкового синтеза — появление специ­фичного белка с определенной молекулярной массой и характер­ными свойствами. Наряду с синтезом новых белковых молекул в клетке возможна деградация новообразованного белка под дей-


 



28*



ствием протеиназ, которые являются эндопептидазами и локали­зуются в основном в лизосомах. Если клетка выработала излишнее количество белка или его выведение затруднительно, то включает­ся внутриклеточная система деградации белка, активируются хра­нители гидролитических ферментов (лизосомы) и цитоплазма ос­вобождается от белковых «излишков».

Третий этап. Конечными продуктами белкового обмена являются диоксид углерода, вода и азотсодержащие вещества — мо­чевина, мочевая кислота, аммиак, креатинин, гиппуровая кислота и индикан. Эти продукты должны быть выведены из организма либо обезврежены в ходе дальнейших метаболических реакций. Так, часть аммиака обезвреживается за счет образования глютами-новой кислоты и глютамина либо преобразовывается в менее ток­сичный продукт — мочевину. Удаление печени — основного моче-винобразовательного органа — приводит к аммиачному отравле­нию, которое сказывается прежде всего на состоянии ЦНС. Моче­вая кислота, являющаяся конечным продуктом обмена нуклеи­новых кислот, как и мочевина, выводится из организма через поч­ки. Некоторые количества аммиака могут связываться непосред­ственно в почках с образованием аммонийных солей.

В кишечнике под влиянием гнилостных бактерий белок пищи может преобразовываться в индол и скатол, которые, поступая в кровь, инактивируются за счет связывания с серной кислотой. Образовавшиеся индоксил-серная (индикан) и скатоксил-серная кислоты выводятся с мочой.

При нарушении образования мочевины в печени или прекра­щении выведения продуктов белкового обмена в организме разви­вается гиперазотемия — накопление в крови аммиака, аминокис­лот и полипептидов. Переизбыток полипептидов вызывает значи­тельное падение кровяного давления (пептонный шок), замедле­ние сердечной деятельности и увеличение проницаемости ка­пилляров. Эта реакция обусловлена высвобождением значитель­ных количеств гистамина, который вызывает сосудистые рас­стройства и увеличение кровенаполнения печени за счет сужения печеночных вен, спазм сосудов селезенки и уменьшение объема кровотока почек. Накопление крови в печени и изменения в поч­ках сопровождаются замедлением свертываемости крови. В даль­нейшем развивается порозность капилляров, в крови увеличивает­ся уровень калия, а кальция снижается. Падение активности холин-эстеразы приводит к изменению активности вегетативной нерв­ной системы. При нарушении деятельности почек в моче накап­ливаются до опасных пределов мочевина и индикан, а в крови по­являются фенол, паракрезол и другие токсические продукты, что приводит к тяжелому отравлению организма (уремия). Наряду с почками выведение конечных продуктов белкового обмена осуще­ствляется желудочно-кишечным трактом, потовыми железами и, в' меньшей степени, через легкие с выдыхаемым воздухом.


РЕГУЛЯЦИЯ БЕЛКОВОГО ОБМЕНА

На клеточном уровне осуществляется «автоматический прин­цип» сопряженности внутриклеточных реакций метаболизма. Од­нако в многоклеточном организме эти внутриклеточные механиз­мы подчинены внешним регуляторным воздействиям со стороны нервной и эндокринной систем. Регуляторное влияние централь­ной нервной системы на процессы синтеза и деградации белка происходит как за счет прямых нервно-трофических влияний, так и опосредованно за счет целенаправленного изменения деятель­ности различных желез эндокринной системы.

Нервно-трофические влияния демонстративно проявляются при денервации тканей. После перерезки двигательных нервов в иннер-вируемых ими мышцах начинается ускоренный распад белка и раз­вивается атрофия мышечной ткани за счет уменьшения количества мышечных белков. Трофическое влияние нервные волокна осуще­ствляют за счет синтезируемого в теле нейрона и транспортируемо­го по аксону специфического нервно-ростового фактора. Если, не нарушая функционирования мембраны, прекратить перемещение аксоплазмы в нервном волокне (обработка колхицином сохраняет проведение нервного импульса, но блокирует аксональный транс­порт), то атрофия мышцы наступает так же, как и в случае перерез­ки нерва. Вместе с этим существенным адаптационно-трофичес­ким влиянием обладают нервные структуры симпатической нерв­ной системы: при выделении медиаторов (катехоламинов) сущест­венно меняется белковый метаболизм в пищеварительных железах и других висцеральных органах. Интегративная функция ЦНС, направленная на адекватное приспособление к условиям постоян­но меняющейся среды обитания, обеспечивает свои трофические функции через гипоталамические структуры головного мозга. При удалении коры больших полушарий у животных наблюдается суще­ственное снижение белкового обмена, а у молодых — резкое замед­ление роста за счет снижения новообразования белков. Белковый обмен изменяется при сильном эмоциональном возбуждении, во сне, при гипнотических состояниях и даже условно-рефлекторно в ожидании значительного расхода (изнашивания) структурных бел­ков. Гипоталамус как высший центр регуляции метаболизма, в том числе и белкового обмена, обеспечивает контроль за функциониро­ванием подчиненных ему эндокринных органов посредством про­дукции и вьщеления соответствующих нейрогормонов — либержов и статинов. Это, в свою очередь, приводит к продукции гормонов, обеспечивающих накопление белка (анаболических) или его интен­сивное расходование (катаболических). Анаболические гормоны вы­деляются либо в гипофизе, в половых железах, либо в поджелудоч­ной или щитовидной железе, но в любом случае эффекты этих гормонов целенаправленно координируются с общей программой функционирования организма.


 




Соматотропный гормон (соматотропин) — СТГ, вырабатывае­мый в передней доле гипофиза, осуществляет мощное анаболи­ческое действие в период роста у молодых животных, обеспечивая накопление белковой массы всех органов и тканей и соответству­ющее развитие скелета. У взрослых животных СТГ участвует в ре­гуляции белково-синтетических процессов, что особенно важно для функционирования молочной железы, вырабатывающей ко­лоссальное количество белка. Эффекты СТГ проявляются в ин­тенсификации транспорта аминокислот через клеточные мембра­ны, в стимуляции синтеза информационных РНК в ядре клеток и формировании полисом, на которых происходит синтез полипеп­тидных цепей, в подавлении катепсинов внутриклеточных про-теолитических ферментов.

Инсулин — гормон поджелудочной железы, обладая анаболичес­ким действием, непосредственно влияет на процессы транскрипции и трансляции и опосредованно за счет интенсификации транспорт­ных процессов. На клеточной мембране усиливает транспорт в клет­ку аминокислот и поднимает уровень субстратов для синтеза белка; интенсивное поступление глюкозы обеспечивает этот процесс энер­гетически. Гормоны щитовидной железы — тироксин и трийодтиро-нин по-разному влияют на метаболизм белка. В норме присутствие тиреоидных гормонов необходимо для стимуляции синтеза белка, развития организма, дифференцировки клеток и формирования тка­ней. Если тиреоэктомия существенно нарушает рост и развитие организма, то при гипертиреозе излишняя стимуляция окислитель­ного фосфорилирования приводит к быстрому «сгоранию» метабо­литов углеводного и жирового обмена, а в последующем к расходова­нию и тканевых белков. В этом случае действие гормонов щитовид­ной железы проявляется сугубо катаболически.

Гормоны половых желез оказывают различное по степени воздействия анаболическое влияние. Женские половые гормо­ны (эстрогены) стимулируют синтез белка преимущественно в таких тканях и органах, которые тесно связаны с репродуктив­ной функцией: усиливают рост матки, яйцеводов, молочной железы и влагалища. Влияние эстрогенов на другие органы не­значительно. Мужские половые гормоны (андрогены) обладают более широким анаболическим влиянием не только на органы репродуктивной системы, но и на белоксинтетическую деятель­ность скелетной мускулатуры, что приводит к увеличению мы­шечной массы.

К катаболическим гормонам наряду с тиреоидными гормона­ми, вырабатываемыми при гиперфункции щитовидной железы, можно отнести адренокортикотропный гормон гипофиза, влияю­щий на корковое вещество надпочечника, стимулируя синтез и выделение глюкокортикоидов: АКТГ вызывает интенсивное превращение тканевых белков в глюкозу. Действие глюкокорти­коидов связано с индукцией синтеза ряда ферментов, обеспечи-


вающих дезаминирование аминокислот в ходе глкжонеогене-за — новообразования глюкозы. В печени, однако, глюкокорти-коиды стимулируют синтез белков плазмы.

УГЛЕВОДНЫЙ ОБМЕН

Биологическое значение углеводов заключается прежде всего в обеспечении энергетического обмена: 1 г углеводов выделяет 17,18 кДж (4,1 ккал). За счет углеводного обмена обеспечивается на 60...75 % потребность организма в энергии. Углеводы, прежде всего глюкоза, служат непосредственным источником клеточной энергии. В энергетическом снабжении мозга особая роль при­надлежит глюкозе. Клеточное дыхание, синтез макроэргов и ме­диаторов обеспечивается только за счет поступления глюкозы, единственного углеводного метаболита нервной ткани. Углеводы — наиболее легко мобилизуемые источники энергии, особенно это проявляется при функционировании мышечной ткани, где энер­гетическая обеспеченность сокращений определяется анаэробным и аэробным распадом углеводов. Углеводы легко резервируются в виде гликогена, что поддерживает постоянство углеводного пита­ния тканей и, особенно, мозга, даже при голодании.

Несомненно участие углеводов в пластических функциях орга­низма. Исключительно важны для функционирования клетки и хранения генетической информации дезоксирибоза и рибоза, му-кополисахариды, мукопротеиды, гликопептиды. Вместе с этим, обладая высокой осмотической активностью и являясь обязатель­ной составной частью биологических жидкостей организма, угле­воды (главным образом глюкоза) участвуют в организации транс­портных процессов, поддерживают тонус клеток и основного ве­щества соединительной ткани. Уровень глюкозы в крови — важ­ный гомеостатический фактор: у жвачных животных ее концен­трация составляет 0,4...0,6 г/л, у моногастричных — 1,0 ..1,6 г/л, а у птиц значительно выше — до 3 г/л. Превышение этих уровней приводит к удалению излишних углеводов с мочой. При сниже­нии концентрации сахара в крови из-за дефицита энергетически важного метаболита нарушается работа ЦНС и развиваются судо­роги, сменяющиеся коматозным состоянием.



Просмотров 568

Эта страница нарушает авторские права




allrefrs.su - 2024 год. Все права принадлежат их авторам!