![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Базовые задачи гидродинамики при промывке и цементировании скважин
Основные задачи гидродинамики в бурении основаны на общих уравнениях и задачах гидромеханики, в первую очередь на уравнениях состояния идеальных и реальных жидкостей, которыми чаще всего пользуются при расчетах. При промывке и цементировании скважин простейшими типовыми задачами гидромеханики, допускающими аналитическое решение, являются задачи о течении жидкости в плоской щели (между двумя параллельными бесконечными пластинками), в круглой трубе и в кольцевом пространстве между двумя соосными цилиндрами, если исходить из следующих условий: 1. жидкость несжимаемая (ρ=соnst); 2. течение установившееся 3. все частицы жидкости движутся параллельно твердым стенкам канала, т. е. при совмещении координатной оси Оz с направлением течения, отличной от нуля будет лишь одна составляющая vz cкорости 4. концевые эффекты пренебрежимо малы, т. е. картина течения в любом сечении, нормальному к потоку, идентична 5. вдоль потока действует постоянный градиент давления 6. на жидкость действует объемная сила Если, кроме того, учесть, что скорости частиц жидкости в рассматриваемых каналах симметричны относительно плоскости yz – для щели и относительно оси Оz – для круглой трубы и кольцевого пространства, то vz = v(x) и vz = v(r) соответственно. Поэтому, согласно соотношениям Коши (15) и уравнениям состояния (14) при течении жидкости в щели, отличными от нуля будут лишь одна скорость деформации и одно напряжение сдвига:
Аналогично для течения в трубе и в кольцевом пространстве:
Система дифференциальных уравнений (11) — (14) существенно упрощается: первые два уравнения движения и уравнение неразрывности удовлетворяются тождественно, а третье уравнение системы (14) принимает вид — при течении в плоской щели при течении в трубе и кольцевом пространстве где Интегрируя эти уравнения при условиях σxz = 0 при х = 0 для щели и σrz = 0 при r = 0 для круглой трубы, получим соответственно
где постоянная интегрирования Следует напомнить, что соотношения (3.1) — (3.4) справедливы при ламинарном течении любой (ньютоновской и неньютоновской) жидкости. Сохраняются они и при турбулентном течении, если под величинами Ниже приводятся аналитические решений граничных задач жидкости в щели и в кольцевом пространстве в зависимости от характера течения и реологических свойств жидкости. Решения для круглой трубы получаются простым предельным переходом из решений для кольцевого пространства. Определяются также основные интегральные гидродинамические характеристики потока: объемный расход средняя скорость
коэффициент сопротивления
где Определение объемного расхода Q по заданному перепаду давления ΔР обычно называют прямой задачей гидродинамики, а определение перепада давления ΔР по заданному расходу Q – обратной задачей. В этом отношении все приведенные ниже результаты относятся к решениям прямой граничной задачи, а полученные зависимости пользуются для вычисления гидравлических потерь. Для этой цели определяющим является закон сопротивления, т. е. зависимость коэффициента λ от характеристик течения. Установление экспериментального закона сопротивления – задача практической гидродинамики (гидравлики), где приведенные ниже аналитические зависимости основополагающими. Если λ не зависит от ΔР, то из третьей формулы (22) следует известный закон Дарси-Вейсбаха, широко используемый для вычисления гидравлических потерь в цилиндрических каналах при турбулентном режиме течения:
![]() |