Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Критерии разрушения на основе теории трещин



Известно, что реальная прочность твердых тел во много раз меньше теоретической, равной , где Е – модель Юнга. Объясняется это тем, что реальные тела имеют разного рода микро- и макродефекты: трещины, поры, узкие полости, инородные включения и т.п. Распределение этих дефектов в объеме тела, как правило, случайно, и поэтому случайна величина прочности материала. Экспериментально это убедительно подтверждается тем, что наблюдается разброс (иногда довольно значительный) при испытаниях одинаковых образцов в одинаковых условиях, и имеет место так называемый масштабный эффект: большие образцы имеют меньшую прочность чем малые образцы той же формы. Это характерно для всех хрупких тел вообще, горных пород и тампонажного камня в частности.

Кроме того, современные экспериментальные данные свидетельствуют о постепенном развитии разрушения и о большой роли первичных дефектов в формировании картины разрушения. Трещины начинаются развивается задолго до полного разрушения тела. Разрушение не единовременный акт, оно развивается с большей или меньшей скоростью при сравнительно невысоких напряжениях и представляет собой некоторый динамический процесс (см. разд. 4.2).

Поэтому прежние представления о наступлении разрушения при достижении некоторого критического напряжения материала устарели.

Для оценки реальной прочности тел необходимо исходить из наличия в теле дефектов. При этом важное значение приобретает использование современных результатов теории трещин [33]. Хотя эти результаты не позволяют охватить все многообразие особенностей разрушения, но их использование дает инженеру необходимый инструмент для более правильной оценки прочности тел и для более глубокого понимания причин разрушения. С помощью теории трещин можно количественно объяснить больше различие между реальной и теоретической прочностью тел, влияние масштабного фактора, различие между прочностью на сжатие и растяжение и многое другое.

Гриффитс впервые показал, что низкая реальная прочность хрупких тел вызывается наличием трещин, приводящих к значительной концентрации напряжений. В основе теории Гриффитса лежит представление об энергетическом барьере – поверхностной энергии, который необходимо преодолеть для развития трещины, т.е. для образования новой поверхности. В то же время при увеличении трещины освобождается потенциальная энергия, которая может быть израсходована на разрушение.

Любой материал в данных условиях (температура, влажность, внешняя среда и т.д.) характеризуется некоторой плотностью поверхностной энергии , которая определяет величину работы, необходимую для образования единицы новой свободной поверхности. Энергетический критерий Гриффитса формулируется следующим образом: разрушение тела развивается, если плотность освобождающейся энергии достигает критического значения. Например, для трещины длиной 2l в поле равномерно растяжения напряжением p в условиях плоской деформации критерий Гриффитса записывается в виде

,

где - потенциальная энергия тела.

Отсюда следует условие предельного равновесия при растяжении

. (4.33)

Если при данной длине трещины напряжение , то трещина не растет. Если же напряжение достигает критического значения , то трещина расширяется. Из формулы (4.33) вытекает, что не предельное напряжение - прочностная характеристика материала, а произведение

. (4.34)

В инженерных расчетах используется более удобный силовой критерий прочности Ирвина, который по существу эквивалентен критерию Гриффитса, но основан на особенности распределения напряжений в окрестности вершины трещины:

,

где r, - локальная система координат с началом в вершине трещины, kкоэффициент интенсивности напряжений (КИН), который зависит от формы тела, системы нагрузок и геометрии трещины.

Согласно критерию Ирвина, для каждого материала есть критическое значение коэффициента интенсивности напряжений , по достижении которого трещина начинает расти, т.е. для прочности тела необходимо, чтобы .

Таким образом, для оценки влияния трещин на прочность тела необходимо решить соответствующую задачу теории упругости, найти КИН и сравнить его с опытной для данного материала величиной .

Напряжения и перемещения около вершины трещины для каждого типа раскрытия определяются коэффициентами интенсивности и нормального напряжения, поперечного и продольного сдвигов соответственно. Иногда в литературе используют другие обозначения КИН и вводят иные физические понятия. Например, согласно Г.И. Баренблатту, называют модулем сцепления, а - сдвиговым модулем сцепления.

В простейших случаях равномерного растяжения плоскости плоского и антиплоского сдвигов коэффициенты интенсивности напряжений вычисляются по формулам

,

где - соответственно силы растяжения, плоского и антиплоского сдвигов.

, (4.35)

где - угол начального распространения трещины относительно ее направления (ориентации).

Отсюда и находятся критические значения внешней нагрузки, при которой начинается локальное разрушение тела. Например, при равномерном растяжении или сжатии плоскости с трещиной, расположенной под углом к направлению внешней силы, имеют место следующие формулы для определения:

Коэффициентов интенсивности напряжений

;

угла начального распространения трещины

.

Предельного напряжения

,

где верхние знаки соответствуют растяжению, а нижние – сжатию; -критическое значение напряжения при растяжении плоскости с трещиной, перпендикулярной к направлению растяженияи.

Коэффициенты интенсивности напряжений при указанных на рис. видах нагружения вычисляются по формуле [7]

,

где

разрушение образца в целом определяется локальной прочностью его наиболее слабого элемента объема.

Функция распределения прочности при хрупком разрушении представляется следующим образом:

(4.36)

где - параметры закона распределения, подлежащие определению из опытов.

Последнее выражение с помощью двукратного логарифмирования можно преобразить в уравнение прямой

 

в координатах и . Обычно для построения прямой используются абсциссы и соответствующие им ординаты , где ; т – номер наблюдаемого значения прочности (расположены в порядке возрастания); п – общее число наблюдений.

Для определения параметров и используется либо графическое построение, либо метод наименьших квадратов. В результате

,

где - значение х при у = 0.

Доказано, что параметр связан с объемом тела. Если найден параметр для образца объемом , то для образца объемом будет

.

Вероятность разрушения образца под действием напряжения вычисляется по формуле

,

где отношение можно рассматривать как коэффициент безопасности.

Отсюда легко доказать, что для двух образцов, объемы которых и , разрушение равновероятно, если выполняется соотношение

.

В общем случае результаты испытаний на прочность могут быть приближены одним уравнением (4.36) лишь в довольно ограниченном интервале. Чаще для адекватного описания требуются две прямые с различным наклоном. Точка пересечения этих прямых может означать изменение самого механизма разрушения.

Для того, чтобы определить влияние на хрупкое разрушение неоднородного поля напряжений, сравнивают наибольшее напряжение в неоднородном поле напряжений в момент разрушения с разрушающим напряжением в однородном поле, используя условие равной вероятности разрушения.

Например, в случае чистого изгиба балки имеет место следующее соотношение между прочностью на изгиб и прочностью на растяжение:

,

где V – объем образца, испытываемого на растяжение; - объем балки. Если, например, и , то .

Статистический подход к хрупкому разрушению при трехмерном напряженном состоянии может быть основан на допущении, что по отношению к разрушению напряжения не взаимодействуют. Тогда сравнение с вероятностью разрушения под действием одноосного нагружения напряжением дает уравнение равной вероятности разрушения

,

представляющее собой условие трехмерного разрушения.



Просмотров 1639

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!