![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Управление надежностью изделия
Надежность — одно из главных свойств изделия, определяющее наряду с производительностью его эффективность. Надежность определяется из интересов потребителей. Показатели надежности отражают важные качественные особенности изделий. К основным свойствам, характеризующим надежность изделия, относятся: - безотказность (свойство изделия сохранять работоспособность в течение некоторого времени наработки без вынужденных перерывов); - долговечность (свойство изделия сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания); - сохраняемость (свойство изделия сохранять обусловленные эксплуатационные показатели в течение и после срока хранения и транспортировки). Показатели надежности, по существу, дополняют характеристику технического эффекта, так как предопределяют длительность и вероятность или полноту появления этого эффекта при эксплуатации изделия. Например, суммарный эффект от изделия у потребителя за срок службы Тсл(в годах) при годовом эффекте в случае безотказной работы Эгсоставит
где Кэф - коэффициент сохраняемости, учитывающий степень безотказности изделия в эксплуатации. Таким образом, надежность изделия - свойство, безусловно, одно из важнейших для изделия на всех этапах его жизненного цикла (кроме утилизации). С другой стороны, оно имеет четкую технико-экономическую природу. Необходимая надежность конкретного изделия определяется его назначением, и мера надежности - одна из тех характеристик, за которую платит потребитель. В то же время обеспечение необходимого уровня надежности может быть решено многими техническими приемами, реализация каждого из которых требует определенных затрат. В такой постановке возникает задача технико-экономической оптимизации надежности изделия и затрат на ее обеспечение. Критерием выбора оптимального решения при определении уровня надежности изделия служит минимум суммы приведенных затрат в комплексе "изделие-потребители-смежные звенья":
где j - число объектов комплекса, по которым инвестиции К или (и) текущие затраты (С) различны в зависимости от вариантов выполнения изделия; Ен- внутренний темп окупаемости инвестиций.
Это уравнение равносильно следующему:
где: К0- капитальные затраты на повышение надежности (снижение вероятности отказов) изделия;
Утс- годовой ущерб от отказов изделия у потребителя (ремонт, обслуживание); Уп - годовой ущерб в основной деятельности потребителя от отказов изделия; Усз- годовой ущерб в смежных звеньях от отказов изделия. Предположим, таким изделием является генератор электроэнергии, поставляемый фирмой для районных электростанций. При его отказах потребителю наносится ущерб не только из-за необходимости дополнительного обслуживания и ремонта генератора, но и из-за снижения качества продукции (напряжение, частота в электросетях), недовыпуска продукции, непроизводительного расхода ресурсов при простое, необходимости иметь резервное оборудование и дополнительные запасы. В свою очередь ущерб в смежных звеньях (у потребителей электроэнергии) может быть особенно велик (им необходимо иметь соответствующие средства защиты, аварийное автономное резервное питание, запас предметов труда и т.д.). Типичная ситуация отображена на графике.
Предположим, что в исходном варианте изделия показатели его надежности были на уровне Н1, а цена потребления изделия (инвестиции в него и текущие расходы) была Зп1. Изготовителем разработан модифицированный вариант изделия с повышенной надежностью Нopt, но цена его потребления Зп.opt> Зп1. В отраженной на графике рис. ситуации потребителю изделия будет выгодно заплатить большую сумму за изделие с повышенной надежностью, так как при этом цена потребления изделия за вычетом суммы ущерба от отказов \изделия будет минимальной. Дальнейшее повышение надежности и, следовательно, цены изделия будет невыгодно потребителю. Задача производителя изделия состоит в таком проектировании модифицированного изделия и организации его производства, чтобы обеспечить привлекательную для фирмы-изготовителя норму прибыли. Таким образом, мы еще раз убеждаемся в том, что изготовитель должен системно подойти к ценообразованию на продукцию, изучив экономические характеристики эксплуатации изделия потребителем. Технически возможны различные методы повышения надежности изделия: - применение более прочных материалов с более высокими нагрузочными характеристиками, изменение конструктивных решений; - поэлементное или поканальное резервирование; - повышение схемной надежности; - совершенствование технологии изготовления; - совершенствование системы ремонтов, обслуживания и эксплуатации. По каждому из этих вариантов технологических решений должны быть рассчитаны затраты, а далее целесообразно построить диаграммы "затраты-надежность", аналогичные приведенным на рис. Анализ таких диаграмм позволяет принять решение о методах реализации экономически оптимальной надежности изделия.
47. Интегральный технический показатель качества изделия Стандарт ИСО в качестве метода оценки качества нового изделия рекомендует сравнение его характеристик с соответствующими характеристиками аналога. Естественно, валидность оценки зависит от правильности выбора аналога. Прежде всего следует выбрать аналог, наиболее близкий по функциональному назначению, присутствующий на рынке сбыта с устойчивой рыночной ценой и известными технико-экономическими характеристиками. Если проектируемое изделие по своему функциональному назначению заменяет несколько существующих изделий, то в качестве аналога используется их совокупность. Оценка уровня качества разрабатываемых изделий производится на основе сравнения основных групп технико-эксплуатационных параметров: назначения, надежности, технологичности, унификации, эргономичности, патенто-правовых и экологических. Выбор номенклатуры показателей производится в соответствии с имеющимися материалами (стандартами, отраслевыми материалами и т.д.) или производится самим разработчиком. Обоснование такого выбора должно содержаться в отчетных материалах ОКР. Например, для разных групп радиоэлектронной аппаратуры рекомендуются разные показатели функционального назначения .
Каждому из выбранных показателей для сравнения экспертным путем должен быть определен коэффициент его весомости (важности). Как уже указывалось, форма представления комплексного показателя качества не может быть однозначно обоснована. Поэтому следует использовать требования нормативных документов или обосновать свой вариант выбора. Наиболее широко используются две основные формы интегрального показателя качества: 1) аддитивная где gi- коэффициент весомости i-го параметра; Аi- показатель качества по i-му параметру; n - число параметров, по которым производится сравнение; 2) мультипликативная Аддитивная форма (средневзвешенное суммирование) наиболее распространена, хотя ее недостатком является возможность "компенсации" уровня качества по одним параметрам за счет других. Кроме того, она допускает ситуацию значимости интегрального показателя качества при нулевом значении одного или нескольких параметров. В этом смысле мультипликативная форма представления предпочтительнее, хотя следует отметить, что мультипликативная форма легко преобразуется в аддитивную простым логарифмированием. При сравнении проектируемого изделия с аналогом возникает еще одна проблема - приведение сравниваемых вариантов к сопоставимому виду. Сопоставимость должна обеспечиваться: - по сферам и условиям эксплуатации; - по нормативной базе для расчета затрат и полезного результата; - по конечному полезному результату. Сопоставимость по сферам и условиям эксплуатации обеспечивается за счет выбора аналога. Сопоставимость по полезному результату необходима при различиях в используемых технико-эксплуатационных параметрах. Обычно используется приведение к сопоставимости с помощью коэффициентов приведения. По существу, они обеспечивают сопоставимость по некоторым выбранным опорным параметрам (энергетике, числу параметров и режимов, точности и т.д.). Таким образом, они свидетельствуют, например, о том, что при комплексном сопоставлении излучаемой мощности РЛС и ее надежности для последнего параметра следует использовать поток отказов, а не вероятность безотказной работы. Это связано с тем, что и излучаемая мощность, и поток отказов коррелируют с аппаратурными затратами однонаправленно и примерно в равной мере. Коэффициенты приведения для различных параметров РЭА
48.Интегральный экономический показатель изделия и его технико-экономическая эффективность В качестве интегрального экономического показателя нового изделия при его сравнении с аналогом служит цена потребления. Она выражается следующей формулой:
где К - единовременные капитальные затраты (на приобретение, транспортировку, монтаж, а также сопутствующие затраты); Зэ - затраты на эксплуатацию за все время работы изделия. При длительном сроке эксплуатации, естественно, должны быть сделаны динамические оценки с применением дисконтирования. Если в результате изменения надежности нового изделия по сравнению с аналогом меняется оценка ущерба (в том числе и в смежных звеньях), это должно быть учтено. Точно также следует учесть сопутствующие положительные результаты применения нового изделия. К числу таковых следует, в частности, отнести: - уменьшение габаритов и массы оборудования при установке на них новых изделий взамен аналога; - повышение точности и быстродействия системы управления. Таким образом, полная формула определения интегрального экономического показателя имеет вид
где Рс - сопутствующие положительные результаты применения нового изделия. Оценку технико-экономической эффективности нового изделия удобно производить с помощью табл. Оценка технико-экономической эффективности нового изделия
Интегральный стоимостный показатель вряд ли может быть более или менее точно рассчитан на ранних этапах ОКР. Это связано с неполнотой конструкторской документации и отсутствием технологической документации. Единственный выход состоит в сравнении данного показателя с ценой аналогичной по элементной базе, технологии и конструкции продукции. Целесообразно при этом вычленить большие и сложные составные части изделия и оценить их отдельно. Выбор оптимального варианта технологического процесса В различных вариантах технологических процессов изготовления новых изделий могут применятся разнообразные заготовки, оборудование, технологическая оснастка и т.д., что приводит к различным трудоемкости, производительности и использованию рабочих различной квалификации. Основными критериями для выбора оптимального технологического процесса являются себестоимость и производительность. Для упрощения расчетов используют технологическую себестоимость, которая является частью полной себестоимости и учитывает затраты, зависящие от варианта технологического процесса:
где Зт- технологическая себестоимость; Для выбора оптимального варианта техпроцесса, т.е. для сопоставительной оценки нет необходимости производить поэлементный расчет всех статей затрат, входящих в себестоимость, а достаточно проанализировать лишь затраты, меняющиеся при изменении технологического процесса. Вычислять и включать в себестоимость затраты, не меняющиеся при изменении варианта процесса, не имеет смысла, так как при определении абсолютной величины экономии, достигаемой при применении более выгодного варианта, одинаковые слагаемые себестоимости взаимно уничтожаются. Сравнение вариантов технологического процесса по себестоимости производится следующим образом. Технологическая себестоимость при варианте 1 равна
а при варианте 2 составляет
Графически варианты 1 и 2 могут быть представлены прямыми линиями. Точка А пересечения этих линий определяет критическое количество деталей Qкр, при котором оба варианта будут равноценными, т.е.
или откуда При объеме выпуска меньше критического более экономичным будет вариант 1, а при количестве изделий больше критического - вариант 2. Выбор наиболее экономичного варианта реализации технологического процесса из множества возможных способов изготовления продукции следует в общем случае осуществлять по минимуму приведенных затрат, которые принимаются в качестве критерия оптимальности. Однако для сопоставления вариантов технологических процессов во многих случаях достаточно ограничиться расчетом технологической себестоимости выпуска. Поэтому в дальнейшем в качестве ценовой функции используются не полные приведенные затраты, а минимум суммы где
![]() |