![]()
Главная Обратная связь Дисциплины:
Архитектура (936) ![]()
|
Способы получения важнейших диенов
Способы получения углеводородов ряда дивинила в большинстве случаев не отличаются от способов получения олефинов, только соответствующие реакции необходимо проводить дважды или в качестве исходного вещества применять соединения, уже содержащие двойную связь. Дивинил и изопрен получают в промышленности дегидрированием соответственно бутано-бутиленовых или изопентан-изоамиленовых смесей обычно над катализаторами, содержащими Cr2O3: 2. Очень большую роль в промышленном производстве дивинила сыграл метод С. В. Лебедева:
2С2Н5ОН → СН2=СН–СН=СН2 + 2Н2О + Н2 (70% от теоретического)
3. Дивинил, изопрен, диизопропенил получают дегидратацией гликолей:
4. Хлорпрен получают присоединением хлористого водорода к винилацетилену:
Физические свойства 1,3-алкадиенов Дивинил при обычных условиях – газ. Изопрен и другие простейшие алкадиены – жидкости. Обычные закономерности, свойственные гомологическим рядам углеводородов, действуют и в этом ряду. Для алкадиенов с сопряженными двойными связями характерны аномально высокие показатели преломления света. Благодаря этой особенности найденные молекулярные рефракции алкадиенов значительно больше вычисленных. Разница между найденной и вычисленной величинами составляет обычно 1 ÷ 1,5 единицы. Она называется молекулярной экзальтацией.
Химические особенности 1,3-алкадиенов Две сопряженные π-связи образуют общее электронное облако – все четыре углеродных атома находятся в состоянии sp2-гибридизации (см. главу 2). Это приводит к укорочению простой связи (до 0,146 нм) и к стабилизации молекулы. Так, например, энергия образования молекулы дивинила на 14,6 кДж/моль больше по сравнению с вычисленной энергией образования углеводорода того же состава, но без учета сопряжения двойных связей. Эту разность называют энергией резонанса. Эта особенность в строении диеновых углеводородов делает их способными присоединять различные вещества не только по одной из двойных связей, но и к крайним атомам сопряженной системы – в 1,4-положения с перемещением двойной связи. Такое присоединение определяется динамическим эффектом сопряжения, т.е. перераспределением электронной плотности молекулы под влиянием атакующего агента.
Гидрирование Каталитически возбужденный водород присоединяется в 1,2- и 1,4-положения: Галогенирование Галогены также способны присоединяться к сопряженным системам в 1,2- и 1,4-положения: Как и в случае этиленовых углеводородов, присоединение может проходить как по ионному, так и по радикальному механизму. При ионном механизме присоединения первоначально возникающий π-комплекс (I) быстро превращается в сопряженный карбониевый ион с положительным зарядом на втором и четвертом углеродных атомах. Этот ион можно изобразить или двумя граничными формулами (II) или одной формулой (III). Этот карбкатион присоединяет анион галогена с образованием продуктов 1,2- и 1,4-присоединения: Гидрогалогенирование В реакциях присоединения галогеноводородов действуют те же закономерности: Гипогалогенирование Гипогалогенитные кислоты и их эфиры присоединяются преимущественно в 1,2-положение:
Димеризация При нагревании молекулы диеновых углеводородов способны присоединяться друг к другу таким образом, что одна из них реагирует в 1,2-, а другая в 1,4- положениях. Одновременно в небольших количествах образуется продукт, когда обе молекулы реагируют в 1,4-положениие: Диеновый синтез Диеновые углеводороды особенно легко димеризуются с молекулами, имеющими активированную двойную связь. Реакции этого типа называются диеновым синтезом или реакциями Дильса-Альдера:
Полимеризация
Важной особенностью диеновых углеводородов с сопряженными связями является их способность полимеризоваться в каучукоподобные продукты. Промышленный интерес представляет цепная полимеризация диеновых углеводородов под влиянием катализаторов или инициаторов. В качестве катализаторов используются щелочные металлы, металлоорганические соединения, в качестве инициаторов – органические и неорганические пероксиды. При полимеризации отдельные молекулы мономеров могут соединяться друг с другом в 1,2-, в 1,4-положения или одна молекула реагирует в 1,2-, а другая – в 1,4- положение: Скорость полимеризации зависит от строения диенов и условий полимеризации. Заместители в середине молекулы облегчают, а на конце молекулы затрудняют полимеризацию. Изопрен полимеризуется быстрее, а пиперилен медленнее, чем дивинил. Наиболее ценные продукты получаются при стереорегулярной (пространственно упорядоченной) полимеризации в 1.4-положение с образованием цис-конфигурации каждого остатка:
По химическому составу и строению натуральный каучук представляет собой стереорегулярный цис-полимер изопрена. Строение каучука и других полимеров диеновых углеводородов было доказано методом озонирования (по Гарриесу). Получение при озонолизе левулинового альдегида подтверждает упорядоченное 1,4-строение.
Различные виды синтетического и натурального каучука широко применяются в промышленности. Пионером в организации крупного промышленного производства синтетического каучука был Советский Союз.
ЗАДАЧИ ДЛЯ САМОПРОВЕРКИ
1. Рассчитать массу (г) 1,3-бутадиена, образующегося в результате дегидрирования 20 дм3 бутана (н. у.), если выход бутадиена составляет 50%.
2. При пропускании 200 дм3 (при н. у.) паров этилового спирта над дегидратирующим и дегидрирующим катализаторами было получено 90 дм3 газообразного (при н. у.) дивинила. Определить выход реакции.
3. Рассчитайте максимальную массу (г) брома, который может присоединиться к 1,3-бутадиену, если его объем составляет 12 дм3 (условия нормальные).
4. При окислении по Гарриесу непредельного углеводорода получен ацетон, масса которого оказалась равной 29 г. Определить массу (в г) непредельного углеводорода, вступившего в реакцию, исходя из предположения, что выход продуктов озонолиза – количественный.
5. Назовите углеводород по международной номенклатуре
6. Написать структурную формулу 2,5-диметил-4-изопропил-1,5-гексадиена. 3.4. АЛКИНЫ: определение, изомерия, номенклатура Алкинами называют углеводороды, содержащие кроме σ-связей две π-связи (тройную связь) у одной пары углеродных атомов. Общая формула гомологического ряда ацетиленовых углеводородов СnH2n-2. Родоначальником этого ряда является ацетилен. Изомерия и номенклатура Ацетиленовые углеводороды по номенклатуре ИЮПАК называют, пользуясь теми же правилами, что и в случае предельных углеводородов, но суффикс «ан» заменяется суффиксом «ин». Главная цепь выбирается так, чтобы в нее попала тройная связь, а нумеруется с того конца, к которому ближе тройная связь. Простейшие ацетиленовые углеводороды часто называют как алкилзамещенные ацетилена, т.е. по рациональной номенклатуре: 4-метил-1-пентин 4-метил-2-пентин Изобутилацетилен метилизопропилацетилен Изомерия ацетиленовых углеводородов определяется как строением углеродного скелета, так и положением тройной связи.
Способы получения. Ацетиленовые углеводороды получают либо алкилированием ацетилена, либо отщеплением галогеноводородов или галогенов от полигалогенопроизводных. 1. Ацетилен можно получить при высокотемпературном крекинге метана: а также при гидролизе карбида кальция: СаС2 + 2Н2О → СН≡СН + Са(ОН)2 2. Алкилирование ацетилена осуществляют, превращая ацетилен в металлоорганические соединения: СН≡СН +NaNH2 → CH≡C–Na + NH3 ацетиленид натрия CH≡C–Na + СH3J → CH≡C–СH3 + NaJ пропин 3. Ацетиленовые углеводороды образуются при действии спиртовой щелочи на дигалогенопроизводные предельных углеводородов, содержащих галогены у одного или соседних атомов углерода: Физические свойства Основные закономерности в изменении температур кипения и плавления в гомологическом ряду ацетиленовых углеводородов сходны с закономерностями в ряду этиленовых и предельных углеводородов. Положение тройной связи в цепи еще больше влияет на температуру кипения. Так, например, 1-бутин кипит при 8,5оС, а 2-бутин – при 27оС, тогда как оба бутана и все бутилены при обычных условиях – вещества газообразные. Плотность и показатель преломления алкинов значительно выше, чем у алкенов и тем более алканов. Ацетиленовые углеводороды имеют в инфракрасном спектре характерные полосы поглощения валентных колебаний тройной связи при 4,75 – 4,2 мкм (2100 – 2300 см–1.
Химические свойства При рассмотрении химических свойств алкинов следует учитывать особенности тройной связи: по сравнению с алкенами алкины несколько менее активны в реакциях электрофильного присоединения и более активны в реакциях с нуклеофилами (вода, алкоголяты, амины). Эти особенности ацетиленовой группировки объясняются ее строением. Оба углеродных атома в ацетилене находятся в sp-гибридном состоянии. Между тем, чем больше доля s-орбитали в гибридном состоянии, тем ближе электроны находятся к ядру и, следовательно, тем труднее эти электроны вовлекаются в химические превращения с участием электрофилов. С другой стороны, ядра углерода в ацетилене гораздо более доступны для нуклеофильных реагентов благодаря его линейному строению: Этот же фактор обусловливает и значительную СН-кислотность концевой ацетиленовой группировки. Электронная пара С-Н связи в молекуле ацетилена ближе к ядру, чем в случае этилена, и атом водорода более положительно поляризован.
Гидрирование Водород присоединяется по месту тройной связи в присутствии тех же катализаторов, что и по месту двойной связи: Галогенирование Присоединение галогенов (хлора, брома, йода) к алкинам по электрофильному механизму также идет с меньшей скоростью, чем к олефинам. Образующиеся при этом непредельные дигалогенопроизводные можно выделить из реакционной смеси:
Гидрогалогенирование Присоединение галогеноводородов к алкинам приводит к смеси этиленовых моногалогенозамещенных и предельных дигалогенозамещенных углеводородов: Реакции присоединения галогенов и галогеноводородов к алкинам могут проходить по механизму электрофильного или радикального присоединения. При электрофильном присоединении соблюдается правило Марковникова, при радикальном механизме наблюдается противоположное направление присоединения.
Гидратация Алкины легко присоединяют воду и кислоты в отличие от алкенов. Присоединение воды ведут в присутствии сульфата ртути – реакция Кучерова. При этом из ацетилена получается уксусный альдегид, а из его гомологов – кетоны: Реакцию ацетилена с водой используют в промышленности для получения уксусного альдегида. Возможный механизм реакции Кучерова: Присоединение спиртов Спирты присоединяются к алкинам в присутствии алкоголятов. Этим способом получают виниловые эфиры, а также ацетали:
Присоединение спиртов в присутствии алкоголятов – это типичная реакция нуклеофильного присоединения. Ее механизм можно представить следующим образом:
![]() |