Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



А) Диссоциация в водном растворе



O O

R-C R-C + H+

O-H O-

По степени диссоциации – это слабые кислоты. Наиболее сильная – муравьиная кислота. У других кислот углеводородный радикал, обладающий электродонорными свойствами, отталкивает электроны к водороду (положительный индукционный эффект), и кислотность снижается.

HCOOH Кд=2,14.10-4

CH3 C O H Кд=1,75.10-5

О

Степень диссоциации увеличивается при введении в радикал электроноакцепторных групп, например, групп С=О, ОН, Cl. Чем ближе эти группы расположены к СООН, тем сильнее кислота. Например, у хлоруксусной кислоты

Cl CH2 C OH Кд=1,5.10-3

О

у трихлоруксусной

Cl

Cl C C-O-H Кд=2,1.10-1

Cl

т.е. трихлоруксусная кислота аналогична сильным минеральным кислотам.

 

2) Образование солей происходит при взаимодействии с металлами, окисями, гидроокисями металлов, с некоторыми другими солями и аммиаком

а) 2HCOOH + Mg H2 + (HCOO)2Mg

формиат магния

б) 2СH3COOH + CaO (CH3COO)2Ca + H2O

ацетат кальция

в) С2H5COOH + NaOH H2O + C2H5COONa

пропионат натрия

г) CH3COOH + NaHCO3 CH3COONa + CO2 + H2O

д) CH3COONa + AgNO3 CH3COOAg + NaNO3

е) CH3COOH + NH3 [CH3COO-]N+H4

 

3) Образование производных карбоновых кислот путем замещения гидроксила (реакции ацилирования)

А) Образование хлорангидридов кислот

O O

CH3-C + PCl5 CH3-C + POCl3 + HCl

OH Cl

(или PCl3 хлорангидрид уксусной кислоты

SOCl2) (хлористый ацетил)

Б) Образование амидов карбоновых кислот

O O

CH3-C + NH3 CH3-C + H2O

OH NH2

O O

CH3-C + NH3 CH3-C + HCl NH4Cl

Cl NH2

в) Образование сложных эфиров со спиртами (см. свойства спиртов)

Дегидратация кислот

O O

CH3-C CH3-C

OH O

OH H2O + CH3-C

CH3-C Kat O

O

ангидрид уксусной кислоты

Реакция требует очень высокой температуры, поэтому чаще ангидриды кислот получают взаимодействием солей с хлорангидридами.

O O

CH3-C CH3-C

ONa NaCl + O

Cl CH3-C

CH3-C O

O

5) Декарбоксилирование – отщепление СО2.

У предельных одноосновных кислот идет трудно и требует высокой температуры и присутствия щелочи. В результате образуется углеводород.

O

CH3-C + NaOH Na2CO3 + CH4

ONa

6) Окисление.

Предельные одноосновные кислоты к окислению устойчивы, за исключением муравьиной кислоты, которая проявляет свойства альдегидов.

O O

H-C + O HO-C-OH CO2 + H2O

H

7) Реакции в радикале.

O O

CH3-C + Cl2 ClCH2-C

OH OH


ЛЕКЦИЯ 12

ПРЕДЕЛЬНЫЕ ДВУХОСНОВНЫЕ КИСЛОТЫ

HOOC-COOH щавелевая этандионовая
HOOC-CH2-COOH малоновая пропандионовая
HOOC-CH2-CH2-COOH янтарная и т.д.
OOC-(CH2)3-COOH глутаровая  
OOC-(CH2)4-COOH адипиновая  

 

Отличие в свойствах

1. Кислотные свойства более сильные. Степень диссоциации тем выше, чем ближе две группы СООН.

К1 щавелевая = 3,8.10-2

К1 адипиновая = 3,9.10-5

2. Образуют кислые и средние соли, полные и неполные амиды, хлорангидриды, сложные эфиры.

3. Неустойчивы к нагреванию - разлагаются

а) щавелевая и малеиновая кислоты отщепляют СО2 (декарбоксилируются) с образованием одноосновных кислот.

HOOC-COOH CO2 + HCOOH

б) янтарная и глутаровая кислоты образуют циклические ангидриды

O O

CH2-C CH2-C

OH O

OH H2O + CH2-C

CH2-C O

O

в) адипиновая кислота и следующие при нагревании отщепляют и СО2, и воду, образуя циклические кетоны.

O

CH2-CH2-C

OH CH2-CH2

OH CO2 + H2O + C=O

CH2-CH2-C CH2-CH2

O циклопентанон

Реакция идет легче, если взять кальциевую соль кислоты (выделяется СаСО3).

4. Двухосновные кислоты, в отличие от одноосновных, могут окисляться.

O CO2

HO-C=O CO2 + HO-C

HO-C=O OH H2O

5. Малоновая кислота отличается особой подвижностью атомов водорода в метиленовом мостике. Н – приобретает способность замещаться. Например, диэтиловый эфир малоновой кислоты при действии металлического натрия дает замещение Н на Na.

+ H +

HOOC C COOH

H

O O

C C

OC2H5 OC2H5

CH2 + 2Na H2 + 2 CHNa

O O

C C

OC2H5 OC2H5

 

натриймалоновый эфир

На его основе получают различные кислоты, например,

COOC2H5 COOC2H5

CHNa + Br-CH2-CH3 NaBr + CH-CH2-CH3

COOC2H5 COOC2H5 -2C2H5OH

O

C

OH

CH-CH2-CH3 CO2 + CH3-CH2-CH2-COOH

O масляная кислота

C

OH

6. Поликонденсация двухосновных кислот с двухатомными спиртами и диаминами

O O O O

nC-(CH2)4-C +n HO-CH2-CH2-OH n H2O + (-C-(CH2)4-C-O-CH2-CH2-O-)n

HO OH

адипиновая килота этиленгликоль этиленгликольадипинат

O O O O

nC-(CH2)4-C + nH2N-(CH2)6-NH2 nH2O + (-C-(CH2)4-C-NH-(CH2)6-NH-)n

HO OH

полиамиды (найлон 66)

 

Непредельные кислоты

Одноосновные

O CH2=CH-C OH Акриловая, пропеновая

 

O CH2=CH-C CH3 OH Метакриловая
O CH3-CH=CH-C OH Кротоновая (имеет цис- и транс-изомеры)

 

Двухосновные

HO O C-CH2=CH-C O OH Простейшая бутендиовая (существует в виде двух геометрических изомеров)
O H-C-C OH OH H-C-C O Цис-изомер малеиновая
O H-C-C O OH C-C-H HO Транс-изомер фумаровая кислота

 

Отличия в свойствах

1) Обладают более сильными кислотными свойствами, если двойная связь расположена через одну простую от группы СООН (т.к. углерод в состоянии sp2-гибридизации обладает более высокой электроотрицательностью.)

2) Дают реакции двойных связей

а) присоединения (причем у кислот с сопряженным положением двойной связи – не по правилу Марковникова);

б) окисления – с разрывом двойной связи;

в) полимеризации.

Полимеры непредельных кислот и их производных имеют большое практическое применение. Так, нитрил акриловой кислоты используется для получения полиакрилонитрила – волокна нитрон.

-(CH2-CH-)n-

C N

Полимерные эфиры акриловой кислоты – стеклообразные массы. Полиметилметакрилат (плексиглаз) получают, исходя из ацетона, HCN и CH3OH.

 

O OH

CH3-C + HCN CH3-C-C N CH2=C-C N

CH3 CH3 -H2O CH3

OH O O

CH2=C-C=NH CH2=C-C nCH2=C-C (-CH2-C-)n

CH3 NH2 –NH3 OCH3 C=O

OCH3

ПММА

3) У геометрических изомеров непредельных карбоновых кислот ярко выражена зависимость взаимного влияния групп от их пространственного расположения.

Так, цис- и транс-изомеры бутендиовой кислоты (малеиновая и фумаровая кислоты) очень сильно отличаются и по физическим, и по химическим свойствам.

 

Малеиновая кислота

Цис-изомер – менее устойчив, в природе не встречается. Тпл=1300С. Хорошо растворима в воде. К1=1,5.10-2, К2=1,3.10-6. Хорошо растворима в воде. К1=1,5.10-2, К2=1,3.10-6. Легко отщепляет воду и образует малеиновый ангидрид.

O O

H-С-С H-C-C

OH O

OH H2O + H-C-C

H-C-C O

O

Фумаровая кислота

Транс-изомер – устойчива, встречается в грибах. Тпл=2870С, плохо растворима в воде, К1=1.10-3, К2=3.10-5. Фумарового ангидрида не образуется. При сильном нагревании (3000С) образуется малеиновый ангидрид.

O O

H-C-C H-C-C

O OH O

C-C-H -H2O H-C-C

HO O

В результате реакций присоединения малеиновая и фумаровая кислоты образуют одни и те же вещества. Например,


O

H-C-C

OH O O H-C-COOH

OH + Br2 HO-C-CH-CH-C-OH Br2 +

H-C-C Br Br HOOC-C-H

O

Малеиновая кислота , /-дибромянтарная кислота фумаровая кислота

Сравнивая различия в свойствах малеиновой и фумаровой кислот, можно сформулировать основные особенности геометрической изомерии.

 



Просмотров 1169

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!