Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Понятие о строении пептидов



Остатки аминокислот связаны в белковой молекуле линейно пептидными связями. Карбоксильная группа одной молекулы аминокислоты образует амид, взаимодействуя с аминогруппой соседней аминокислоты. Отдельные пептидные звенья ─NH─CO─CHR─ отличаются друг от друга только боковыми группами:

Простейший пептид может быть образован из двух остатков аминокислот и называется дипептидом. В результате присоединения третьей аминокислоты получается трипептид и т.д. Например:

В природных белках пептидные связи образуются только за счет α-аминогрупп.

Особенности строения белков

Белками называются сложные высокомолекулярные органические соединения, построенные из остатков α-аминокислот, соединенных между собой вторичными амидными связями. При полном гидролизе белок превращается в смесь аминокислот.

Различные молекулы белков с химической точки зрения отличаются друг от друга количественным, качественным составом и порядком аминокислотных остатков полипептидной цепи. Структура цепи, определяемая этими факторами называется первичной структурой белка.

На физические, химические и физико-химические свойства пептидов и белков большое влияние оказывает пространственная конфигурация молекулы, которая описывается вторичной и третичной структурой.

Вторичная структура для большинства белков имеет спиралевидный характер, т.е. полипептидная цепь закручивается в спираль таким образом, что на один виток приходится 3,6 остатка аминокислоты.

В макромолекулах белков обычно, наблюдается чередование спирализованных и неспирализованных участков.

Третичная структура белка представляет собой пространственное расположение спирализованных и неспирализованных участков полипептидной цепи. Связи, определяющие третичную структуру, возникают между функциональными группами боковых радикалов пептидной цепи (водородные, дисульфидные, эфирные, солеобразующие и др.).

Четвертичная структура возникает за счет образования водородных связей, солевых мостиков и т.д. Четвертичная структура между полностью сформировавшимися молекулами характерна для гемоглобина крови (межмолекулярное взаимодействие позволяет получить структуру, состоящую из 4-х полноценных белковых молекул).

Строение белковой молекулы в природных условиях называется нативной структурой белка.

Любое изменении природной структуры белка называется денатурацией. Обратимая денатурация может быть вызвана солями щелочных металлов или аммония, мочевиной и т.д. Необратимая денатурация происходит под действием солей тяжелых металлов, кислот и щелочей, а также высокой температуры

Белки разделяют на протеины (альбумины, глобулины и т.д.), в состав которых входят только остатки аминокислот и протеиды (сложные белки), которые при гидролизе дают аминокислоты и какие-либо другие вещества, например углеводы, гетероциклические соединения, фосфорную кислоту и др. К протеидам относятся нуклеопротеиды, фосфопротеиды, гликопротеиды, хромопротеиды и т.д.

В последнее время белки классифицируются преимущественно по их функциям в организмах:

- Резервные белки (альбумин яйца, казеин молока, глиадин пшеницы, ферритин селезенки и др.)

- Структурные белки (миозин мышц, кератин волос, эластин связок и т.д.)

- Белки, управляющие метаболизмом (ферменты, гормоны, иммунопротеины, транспортные белки, фото- и хеморецепторы)

Белковую природу имеют многочисленные ферменты, которые катализируют реакции определенного типа. Ферментам свойственна высокая избирательность, наибольшая активность при нормальной температуре организма, зависимость ферментной активности от pH. Ферменты разделяются на шесть классов:

1. Оксидоредуктазы – катализируют окислительно-восстановительные процессы.

2. Трансферазы – катализируют перенос химических групп (радикалов).

3. Гидролазы – катализируют гидролитические процессы.

4. Лиазы – обеспечивают присоединение по двойным связям или их образование.

5. Изомеразы – участвуют в процессах изомеризации.

6. Синтетазы – обеспечивают реакции конденсации двух молекул с участием фосфатных групп.

Для обеспечения каталитической функции многие ферменты содержат в молекуле небелковую часть – кофактор. Кофакторами могут быть органические вещества, а также атомы металлов или неметаллов.



Просмотров 872

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!